High power density energy harvesting and human motion monitoring with [trimethylchloromethyl ammonium][CdCl3]/polymer composite

[1]  X. Bu,et al.  A new piezoelectric hybrid metal thiocyanide for energy harvesting and human motion sensing , 2023, Science China Materials.

[2]  P. Yang,et al.  Metal‐Free Perovskite Piezoelectric Nanogenerators for Human–Machine Interfaces and Self‐Powered Electrical Stimulation Applications , 2022, Advanced science.

[3]  M. Nazeeruddin,et al.  Enhancement of Piezoelectricity in Dimensionally Engineered Metal‐Halide Perovskites Induced by Deep Level Defects , 2022, Advanced Energy Materials.

[4]  Ruipeng Li,et al.  Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field , 2022, Science.

[5]  Haixia Zhao,et al.  Achievement of a giant piezoelectric coefficient and piezoelectric voltage coefficient through plastic molecular-based ferroelectric materials , 2022, Matter.

[6]  P. Lu,et al.  Multifunctional Chiral 2D Lead Halide Perovskites with Circularly Polarized Photoluminescence and Piezoelectric Energy Harvesting Properties. , 2022, ACS nano.

[7]  E. Gazit,et al.  Recent Advances in Organic and Organic–Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting , 2022, Advanced Functional Materials.

[8]  X. Bu,et al.  A New Hybrid Lead-Free Metal Halide Piezoelectric for Energy Harvesting and Human Motion Sensing. , 2021, Small.

[9]  K. Yao,et al.  Evolution from Lead‐Based to Lead‐Free Piezoelectrics: Engineering of Lattices, Domains, Boundaries, and Defects Leading to Giant Response , 2021, Advanced materials.

[10]  Zhengbao Yang,et al.  Hierarchically Interconnected Piezoceramic Textile with a Balanced Performance in Piezoelectricity, Flexibility, Toughness, and Air Permeability , 2021, Advanced Functional Materials.

[11]  Chang Kyu Jeong,et al.  Kinetic motion sensors based on flexible and lead-free hybrid piezoelectric composite energy harvesters with nanowires-embedded electrodes for detecting articular movements , 2021 .

[12]  N. Tanguy,et al.  Superior transverse piezoelectricity in organic-inorganic hybrid perovskite nanorods for mechanical energy harvesting , 2021, Nano Energy.

[13]  Jikui Luo,et al.  Interface modulated 0-D piezoceramic nanoparticles/PDMS based piezoelectric composites for highly efficient energy harvesting application , 2021 .

[14]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerator Based on In Situ Growth All‐Inorganic CsPbBr3 Perovskite Nanocrystals in PVDF Fibers with Long‐Term Stability , 2021, Advanced Functional Materials.

[15]  M. Amjoud,et al.  Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvesting , 2021 .

[16]  Xingyi Huang,et al.  Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators , 2021 .

[17]  M. Rana,et al.  Achieving Ultrahigh Piezoelectricity in Organic–Inorganic Vacancy-Ordered Halide Double Perovskites for Mechanical Energy Harvesting , 2020, ACS Energy Letters.

[18]  Shivam Tiwari,et al.  PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications , 2020 .

[19]  R. Xiong,et al.  Organometallic-Based Hybrid Perovskite Piezoelectrics with a Narrow Band Gap. , 2020, Journal of the American Chemical Society.

[20]  Shi-feng Huang,et al.  Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting , 2020, Journal of Materials Chemistry A.

[21]  SungWoo Nam,et al.  Tunable Piezoelectricity of Multifunctional Boron Nitride Nanotube/Poly(dimethylsiloxane) Stretchable Composites , 2020, Advanced materials.

[22]  S. Ogale,et al.  Neutral 1D Perovskite-Type ABX3 Ferroelectrics with High Mechanical Energy Harvesting Performance , 2020 .

[23]  Ruimin Chen,et al.  Sexual dimorphism of gut microbiota at different pubertal status , 2020, Microbial Cell Factories.

[24]  Yong Zhang,et al.  Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices , 2020, Nanoscale advances.

[25]  Sumanta Kumar Karan,et al.  In situ-grown organo-lead bromide perovskite-induced electroactive γ-phase in aerogel PVDF films: an efficient photoactive material for piezoelectric energy harvesting and photodetector applications. , 2020, Nanoscale.

[26]  Seungbum Hong,et al.  Unveiling predominant air-stable organotin bromide perovskite towards mechanical energy harvesting. , 2020, ACS applied materials & interfaces.

[27]  Shaohai Fu,et al.  Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers , 2020 .

[28]  R. Xiong,et al.  Piezoelectric Energy Harvesting Based on Multiaxial Ferroelectrics by Precise Molecular Design , 2020 .

[29]  Yong Qin,et al.  Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode , 2020, Nature Communications.

[30]  K. Yao,et al.  Constructing Polymorphic Nanodomains in BaTiO3 Films via Epitaxial Symmetry Engineering , 2020, Advanced Functional Materials.

[31]  Ravinder Dahiya,et al.  Glycine–Chitosan-Based Flexible Biodegradable Piezoelectric Pressure Sensor , 2020, ACS applied materials & interfaces.

[32]  Yu-Meng You,et al.  Two-dimensional layered perovskite ferroelectric with giant piezoelectric voltage coefficient. , 2019, Journal of the American Chemical Society.

[33]  Hui Yu,et al.  Two-Dimensional Organic-Inorganic Hybrid Rare-Earth Double Perovskite Ferroelectrics. , 2019, Journal of the American Chemical Society.

[34]  Yan Qin,et al.  Mechanical properties of hybrid organic-inorganic perovskites , 2019, Coordination Chemistry Reviews.

[35]  N. Vittayakorn,et al.  Tetragonal BaTiO3 nanowires: a template-free salt-flux-assisted synthesis and its piezoelectric response based on mechanical energy harvesting , 2019, Journal of Materials Chemistry C.

[36]  D. Mandal,et al.  Methylammonium Lead Iodide Incorporated Poly(vinylidene fluoride) Nanofibers for Flexible Piezoelectric-Pyroelectric Nanogenerator. , 2019, ACS applied materials & interfaces.

[37]  Zhenxiang Cheng,et al.  Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range , 2019, Nano Energy.

[38]  S. Ogale,et al.  Microscopic Origin of Piezoelectricity in Lead-Free Halide Perovskite: Application in Nanogenerator Design , 2019, ACS Energy Letters.

[39]  Peng-Fei Li,et al.  A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate , 2019, Science.

[40]  Chul B. Park,et al.  Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components , 2018, Chemical Engineering Journal.

[41]  Soon-Gil Yoon,et al.  Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films , 2018, Nano Energy.

[42]  Jianan Song,et al.  High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure , 2018, Nano Energy.

[43]  Chin-San Wu Characterization, functionality and application of siliceous sponge spicules additive-based manufacturing biopolymer composites , 2018, Additive Manufacturing.

[44]  Joydeep Dhar,et al.  Lattice‐Defect‐Induced Piezo Response in Methylammonium‐Lead‐Iodide Perovskite Based Nanogenerator , 2018 .

[45]  D. Mandal,et al.  Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector. , 2018, ACS applied materials & interfaces.

[46]  Jinlan Wang,et al.  An organic-inorganic perovskite ferroelectric with large piezoelectric response , 2017, Science.

[47]  Xiao Wei Sun,et al.  High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride) , 2017 .

[48]  D. D. de Leeuw,et al.  Flexible Piezoelectric Touch Sensor by Alignment of Lead‐Free Alkaline Niobate Microcubes in PDMS , 2017 .

[49]  Xiao Wei Sun,et al.  Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles , 2016 .

[50]  M. Barbatti,et al.  Photochemistry of CH3Cl: Dissociation and CH···Cl Hydrogen Bond Formation. , 2016, Journal of the American Chemical Society.

[51]  Emily A. Carter,et al.  The melting point of lithium: an orbital-free first-principles molecular dynamics study , 2013 .

[52]  Mengyuan Li,et al.  Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. , 2013, Nature materials.

[53]  H. Cho,et al.  Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation. , 2013, ACS nano.

[54]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[57]  Ahmad Safari,et al.  Effect of Rare‐Earth Additives on Electromechanical Properties of Modified Lead Titanate Ceramics , 1993 .

[58]  Leslie E. Cross,et al.  Composite Piezoelectric Transducers , 1980 .

[59]  Na Li,et al.  Elastic properties related energy conversions of coordination polymers and metal–organic frameworks , 2022, Coordination Chemistry Reviews.

[60]  Yu-Meng You,et al.  Recent progress in the piezoelectricity of molecular ferroelectrics , 2021 .

[61]  I. Pálinkó,et al.  The C-H...Cl hydrogen bond: Does it exist? , 1999 .