Robotic Artificial Muscles: Current Progress and Future Perspectives

Robotic artificial muscles are a subset of artificial muscles that are capable of producing biologically inspired motions useful for robot systems, i.e., large power-to-weight ratios, inherent compliance, and large range of motions. These actuators, ranging from shape memory alloys to dielectric elastomers, are increasingly popular for biomimetic robots as they may operate without using complex linkage designs or other cumbersome mechanisms. Recent achievements in fabrication, modeling, and control methods have significantly contributed to their potential utilization in a wide range of applications. However, no survey paper has gone into depth regarding considerations pertaining to their selection, design, and usage in generating biomimetic motions. In this paper, we discuss important characteristics and considerations in the selection, design, and implementation of various prominent and unique robotic artificial muscles for biomimetic robots, and provide perspectives on next-generation muscle-powered robots.

[1]  Chaoqun Xiang,et al.  The design, hysteresis modeling and control of a novel SMA-fishing-line actuator , 2017 .

[2]  Yong-Lae Park,et al.  Design of flat pneumatic artificial muscles , 2017 .

[3]  Rajnikant V. Patel,et al.  Modeling and Control of Shape Memory Alloy Actuators , 2008, IEEE Transactions on Control Systems Technology.

[4]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[5]  C. Natale,et al.  The twisted string actuation system: Modeling and control , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[6]  L. Hao,et al.  The sliding mode control for different shapes and dimensions of IPMC on resisting its creep characteristics , 2015 .

[7]  R. Fearing,et al.  Optimal energy density piezoelectric bending actuators , 2005 .

[8]  Xiangyang Zhu,et al.  Feedforward deformation control of a dielectric elastomer actuator based on a nonlinear dynamic model , 2015 .

[9]  Qian Wang,et al.  Analysis and Restraining of Eddy Current Damping Effects in Rotary Voice Coil Actuators , 2017, IEEE Transactions on Energy Conversion.

[10]  Mahdi Tavakoli,et al.  Nonlinear Discontinuous Dynamics Averaging and PWM-Based Sliding Control of Solenoid-Valve Pneumatic Actuators , 2015, IEEE/ASME Transactions on Mechatronics.

[11]  Chih-Jer Lin,et al.  Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl–Ishlinskii model , 2015 .

[12]  Jaydev P. Desai,et al.  Development of a Meso-Scale SMA-Based Torsion Actuator for Image-Guided Procedures , 2017, IEEE Transactions on Robotics.

[13]  Dorin Sabin Copaci,et al.  High-displacement flexible Shape Memory Alloy actuator for soft wearable robots , 2015, Robotics Auton. Syst..

[14]  Friedrich Pfeiffer,et al.  Towards the design of a biped jogging robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[15]  Koichi Suzumori,et al.  A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[16]  Dimitris C. Lagoudas,et al.  Aerospace applications of shape memory alloys , 2007 .

[17]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[18]  J. F. Cuttino,et al.  Performance optimization of a fast tool servo for single-point diamond turning machines , 1999 .

[19]  Metin Sitti,et al.  High-Performance Multiresponsive Paper Actuators. , 2016, ACS nano.

[20]  E. Smela,et al.  Stretchable Electrodes with High Conductivity and Photo‐Patternability , 2007 .

[21]  Joo Chuan Yeo,et al.  Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications , 2016 .

[22]  Robert J. Wood,et al.  A high speed soft robot based on dielectric elastomer actuators , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Robert J. Wood,et al.  A geometrically-amplified in-plane piezoelectric actuator for mesoscale robotic systems , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[24]  Jaydev P. Desai,et al.  Design, Modeling and Characterization of A Novel Meso-Scale SMA-Actuated Torsion Actuator. , 2015, Smart materials & structures.

[25]  M. Wehner,et al.  Experimental characterization of components for active soft orthotics , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[26]  Hyungpil Moon,et al.  A survey of non-prehensile pneumatic manipulation surfaces: principles, models and control , 2015, Intell. Serv. Robotics.

[27]  Bram Vanderborght,et al.  Third–Generation Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle , 2012, Adv. Robotics.

[28]  Robert J. Wood,et al.  Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics , 2014 .

[29]  U. Schubert,et al.  Shape memory polymers: Past, present and future developments , 2015 .

[30]  L. Eric Cross,et al.  Tip Deflection and Blocking Force of Soft PZT‐Based Cantilever RAINBOW Actuators , 2004 .

[31]  Jinjun Shan,et al.  Modeling and Inverse Compensation for Coupled Hysteresis in Piezo-Actuated Fabry–Perot Spectrometer , 2017, IEEE/ASME Transactions on Mechatronics.

[32]  Ron Pelrine,et al.  Dielectric elastomer artificial muscle actuators: toward biomimetic motion , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[33]  Mohammad Ali Badamchizadeh,et al.  Using Neural Network Model Predictive Control for Controlling Shape Memory Alloy-Based Manipulator , 2014, IEEE Transactions on Industrial Electronics.

[34]  Yu Chen,et al.  Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures , 2012, Int. J. Robotics Res..

[35]  Behzad Taheri,et al.  Force and Stiffness Backstepping-Sliding Mode Controller for Pneumatic Cylinders , 2014, IEEE/ASME Transactions on Mechatronics.

[36]  Xiaobo Tan,et al.  A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators , 2008, IEEE/ASME Transactions on Mechatronics.

[37]  S. John,et al.  Power-efficient low-temperature woven coiled fibre actuator for wearable applications , 2016, Scientific Reports.

[38]  Guoqiang Li,et al.  A top-down multi-scale modeling for actuation response of polymeric artificial muscles , 2016 .

[39]  Ye Zhao,et al.  Stabilizing Series-Elastic Point-Foot Bipeds Using Whole-Body Operational Space Control , 2016, IEEE Transactions on Robotics.

[40]  Zhigang Suo,et al.  Nonlinear deformation analysis of a dielectric elastomer membrane–spring system , 2010 .

[41]  Mihai Duduta,et al.  Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch , 2016, Advanced materials.

[42]  Carlo Menon,et al.  Design of an assistive wrist orthosis using conductive nylon actuators , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[43]  Jaydev P. Desai,et al.  Towards a Robotic Hand Rehabilitation Exoskeleton for Stroke Therapy , 2014 .

[44]  Gangbing Song,et al.  Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller , 2003 .

[45]  Aaron D. Mazzeo,et al.  Rotary Actuators Based on Pneumatically Driven Elastomeric Structures , 2016, Advanced materials.

[46]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[47]  Xiaobo Tan,et al.  Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin , 2010, IEEE/ASME Transactions on Mechatronics.

[48]  George Nikolakopoulos,et al.  Advanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle Actuators , 2014, IEEE Transactions on Industrial Electronics.

[49]  Zheng Chen,et al.  2D maneuverable robotic fish propelled by multiple ionic polymer–metal composite artificial fins , 2017, International Journal of Intelligent Robotics and Applications.

[50]  Kyu-Jin Cho,et al.  Flea-Inspired Catapult Mechanism for Miniature Jumping Robots , 2012, IEEE Transactions on Robotics.

[51]  Bijan Shirinzadeh,et al.  Enhanced sliding mode motion tracking control of piezoelectric actuators , 2007 .

[52]  D. Maitland,et al.  Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  Robert J. Wood,et al.  Fluid-driven origami-inspired artificial muscles , 2017, Proceedings of the National Academy of Sciences.

[54]  Xiaobo Tan,et al.  Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation , 2010 .

[55]  G. Spinks,et al.  Controlled and scalable torsional actuation of twisted nylon 6 fiber , 2016 .

[56]  Jee-Hwan Ryu,et al.  A study on life cycle of twisted string actuators: Preliminary results , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[57]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[58]  Masuki Kawamoto,et al.  An autonomous actuator driven by fluctuations in ambient humidity. , 2016, Nature materials.

[59]  T. Tjahjowidodo,et al.  A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using The Maxwell-Slip Model , 2011, IEEE/ASME Transactions on Mechatronics.

[60]  S. Ko,et al.  Terrestrial Walking Robot With 2DoF Ionic Polymer–Metal Composite (IPMC) Legs , 2015, IEEE/ASME Transactions on Mechatronics.

[61]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[62]  Ephrahim Garcia,et al.  Modeling of the energy savings of variable recruitment McKibben muscle bundles , 2015, Smart Structures.

[63]  Metin Sitti,et al.  Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot , 2012, IEEE Transactions on Robotics.

[64]  Guomao Yang,et al.  Uniaxial stress dependence of the piezoelectric properties of lead zirconate titanate ceramics , 2000, ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076).

[65]  Metin Sitti,et al.  Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments , 2007, IEEE Transactions on Robotics.

[66]  Bertrand Tondu,et al.  What Is an Artificial Muscle? A Systemic Approach. , 2015 .

[67]  Evelyn J. Park,et al.  The Soft Robotics Toolkit: Shared Resources for Research and Design , 2014 .

[68]  Seon Jeong Kim,et al.  Lima Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles Electrically , Chemically , and Photonically Powered Torsional and , 2012 .

[69]  Jaydev P. Desai,et al.  Development of a Mesoscale Fiberoptic Rotation Sensor for a Torsion Actuator , 2018, IEEE Robotics and Automation Letters.

[70]  Woosoon Yim,et al.  A bio-inspired multi degree of freedom actuator based on a novel cylindrical ionic polymer-metal composite material , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[71]  Qingsong Xu,et al.  Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper , 2013, IEEE Transactions on Robotics.

[72]  H H Asada,et al.  Large Effective-Strain Piezoelectric Actuators Using Nested Cellular Architecture With Exponential Strain Amplification Mechanisms , 2010, IEEE/ASME Transactions on Mechatronics.

[73]  Jee-Hwan Ryu,et al.  Twisted string-based passively variable transmission: Concept, model, and evaluation , 2016 .

[74]  Ian W Hunter,et al.  Multidirectional Artificial Muscles from Nylon , 2017, Advanced materials.

[75]  M. Mertmann,et al.  Design and application of shape memory actuators , 2008 .

[76]  Xiaobo Tan,et al.  Biomimetic robotic artificial muscles , 2013 .

[77]  Xiongbiao Chen,et al.  A Survey of Modeling and Control of Piezoelectric Actuators , 2013 .

[78]  Jian S. Dai,et al.  A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery , 2016, IEEE Transactions on Robotics.

[79]  Robert J. Wood,et al.  Untethered soft robotics , 2018 .

[80]  Kyu-Jin Cho,et al.  Segmented shape memory alloy actuators using hysteresis loop control , 2006 .

[81]  Na Li,et al.  New twist on artificial muscles , 2016, Proceedings of the National Academy of Sciences.

[82]  Jee-Hwan Ryu,et al.  Auxilio: A portable cable-driven exosuit for upper extremity assistance , 2017 .

[83]  Ziqiang Chi,et al.  Recent Advances in the Control of Piezoelectric Actuators , 2014 .

[84]  Jun Zhang,et al.  A compressive sensing-based approach for Preisach hysteresis model identification* , 2016 .

[85]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[86]  Ian W. Hunter,et al.  A comparative analysis of actuator technologies for robotics , 1992 .

[87]  Robert J. Wood,et al.  Soft Robotic Grippers for Biological Sampling on Deep Reefs , 2016, Soft robotics.

[88]  Michael C. Yip,et al.  Bundled Super-Coiled Polymer Artificial Muscles: Design, Characterization, and Modeling , 2018, IEEE Robotics and Automation Letters.

[89]  Mehmet Turan,et al.  Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors. , 2016, ACS applied materials & interfaces.

[90]  Metin Sitti,et al.  Small-scale soft-bodied robot with multimodal locomotion , 2018, Nature.

[91]  Stefan Holzer,et al.  Towards autonomous robotic butlers: Lessons learned with the PR2 , 2011, 2011 IEEE International Conference on Robotics and Automation.

[92]  E. Guizzo,et al.  The rise of the robot worker , 2012, IEEE Spectrum.

[93]  Milind Pandit,et al.  Variable stiffness and recruitment using nylon actuators arranged in a pennate configuration , 2015, Smart Structures.

[94]  Hod Lipson,et al.  Soft material for soft actuators , 2017, Nature Communications.

[95]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[96]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[97]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner , 2015, IEEE Transactions on Control Systems Technology.

[98]  Arne. Olander AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS , 1932 .

[99]  José L. Pons,et al.  Emerging Actuator Technologies: A Micromechatronic Approach , 2005 .

[100]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[101]  Dirk Lefeber,et al.  Pneumatic artificial muscles: Actuators for robotics and automation , 2002 .

[102]  Hoon Cheol Park,et al.  Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators , 2007 .

[103]  Bram Vanderborght,et al.  The Pneumatic Biped “Lucy” Actuated with Pleated Pneumatic Artificial Muscles , 2005, Auton. Robots.

[104]  Ronald S. Fearing,et al.  Robotic vertical jumping agility via series-elastic power modulation , 2016, Science Robotics.

[105]  Siddharth Sanan,et al.  Pneumatic Torsional Actuators for Inflatable Robots , 2014 .

[106]  R. Wood,et al.  A novel low-profile shape memory alloy torsional actuator , 2010 .

[107]  Wei Chen,et al.  Electrically and Sunlight‐Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite , 2017 .

[108]  X. Tran,et al.  A new mathematical model of friction for pneumatic cylinders , 2016 .

[109]  Wei Min Huang,et al.  Nature of the multistage transformation in shape memory alloys upon heating , 2009 .

[110]  Eiichi Yoshida,et al.  Get back in shape! [SMA self-reconfigurable microrobots] , 2002, IEEE Robotics Autom. Mag..

[111]  Jonathan W. Bender,et al.  Properties and Applications of Commercial Magnetorheological Fluids , 1998, Smart Structures.

[112]  Michael C. Yip,et al.  On the Control and Properties of Supercoiled Polymer Artificial Muscles , 2017, IEEE Transactions on Robotics.

[113]  Conor J. Walsh,et al.  Soft Pneumatic Artificial Muscles With Low Threshold Pressures for a Cardiac Compression Device , 2013 .

[114]  Xiangyang Zhu,et al.  A survey on dielectric elastomer actuators for soft robots , 2017, Bioinspiration & biomimetics.

[115]  Sergej Fatikow,et al.  Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey , 2016, IEEE Transactions on Automation Science and Engineering.

[116]  Edoardo Mazza,et al.  Modeling of a pre-strained circular actuator made of dielectric elastomers , 2005 .

[117]  Cagdas D. Onal,et al.  Design and control of a soft and continuously deformable 2D robotic manipulation system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[118]  H. Meng,et al.  A review of stimuli-responsive shape memory polymer composites , 2013 .

[119]  Jana Fuhrmann Biomimetic Robotic Artificial Muscles , 2016 .

[120]  Tomi Lindroos,et al.  Long-term behaviour of binary Ti–49.7Ni (at.%) SMA actuators—the fatigue lives and evolution of strains on thermal cycling , 2010 .

[121]  Woosoon Yim,et al.  A bio-inspired multi degree of freedom actuator based on a novel cylindrical ionic polymer-metal composite material , 2014, Robotics Auton. Syst..

[122]  Leonardo Cappello,et al.  A soft wearable robot for the shoulder: Design, characterization, and preliminary testing , 2017, 2017 International Conference on Rehabilitation Robotics (ICORR).

[123]  Michael C. Yip,et al.  Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles , 2018 .

[124]  Kam K. Leang,et al.  3D-printed ionic polymer-metal composite soft crawling robot , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[125]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[126]  P HollandDónal,et al.  The Soft Robotics Toolkit: Shared Resources for Research and Design , 2014 .

[127]  Franck Plestan,et al.  Second order sliding mode output feedback control with switching gains - Application to the control of a pneumatic actuator , 2014, J. Frankl. Inst..

[128]  Robert J. Wood,et al.  Progress on "Pico" Air Vehicles , 2011, ISRR.

[129]  ShahinpoorMohsen,et al.  A Review of Ionic Polymeric Soft Actuators and Sensors , 2014 .

[131]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[132]  Rahimullah Sarban,et al.  A tubular dielectric elastomer actuator: Fabrication, characterization and active vibration isolation , 2011 .

[133]  Yonas Tadesse,et al.  Twisted and coiled polymer (TCP) muscles embedded in silicone elastomer for use in soft robot , 2017, International Journal of Intelligent Robotics and Applications.

[134]  Kinji Asaka,et al.  Nanothorn electrodes for ionic polymer-metal composite artificial muscles , 2014, Scientific Reports.

[135]  X. Jiang,et al.  Growth and properties of PMN–PT single crystals , 2001 .

[136]  Sridhar Kota,et al.  Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators , 2015, IEEE Transactions on Robotics.

[137]  Robert J. Wood,et al.  Soft robotic glove for combined assistance and at-home rehabilitation , 2015, Robotics Auton. Syst..

[138]  Henrik I. Christensen,et al.  Custom soft robotic gripper sensor skins for haptic object visualization , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[139]  N. Koratkar,et al.  Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network , 2016, Scientific Reports.

[140]  Robert J. Wood,et al.  Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems , 2018, IEEE Robotics and Automation Letters.

[141]  Septimiu E. Salcudean,et al.  Nonlinear control of hydraulic robots , 2001, IEEE Trans. Robotics Autom..

[142]  Cheng Guan,et al.  Nonlinear Adaptive Robust Control of Single-Rod Electro-Hydraulic Actuator With Unknown Nonlinear Parameters , 2008, IEEE Transactions on Control Systems Technology.

[143]  R. Wood,et al.  Design and manufacturing rules for maximizing the performance of polycrystalline piezoelectric bending actuators , 2015 .

[144]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[145]  Jaydev P. Desai,et al.  Toward the Development of a Flexible Mesoscale MRI-Compatible Neurosurgical Continuum Robot , 2017, IEEE Transactions on Robotics.

[146]  Sunil Kumar Rajendran,et al.  Developing a Novel Robotic Fish With Antagonistic Artificial Muscle Actuators , 2017 .

[147]  Yoseph Bar-Cohen,et al.  Flexible, Low-mass Robotic Arm Actuated by Electroactive Polymers and Operated Equivalently to Human Arm and Hand , 1998 .

[148]  Kyu-Jin Cho,et al.  Omegabot : Biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM) , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[149]  Stefan Seelecke,et al.  Robust Position Control of Dielectric Elastomer Actuators Based on LMI Optimization , 2016, IEEE Transactions on Control Systems Technology.

[150]  Kinji Asaka,et al.  Multi-physical model of cation and water transport in ionic polymer-metal composite sensors , 2016 .

[151]  Kaan Erkorkmaz,et al.  Design and Optimization of a Voice Coil Actuator for Precision Motion Applications , 2015, IEEE Transactions on Magnetics.

[152]  Allison M. Okamura,et al.  Design and implementation of a 300% strain soft artificial muscle , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[153]  Robert J. Wood,et al.  Myriapod-like ambulation of a segmented microrobot , 2011, Auton. Robots.

[154]  P. Vigoureux Piezoelectricity An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals , 1947, Nature.

[155]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[156]  Won-jong Kim,et al.  Aquatic Ionic-Polymer-Metal-Composite Insectile Robot With Multi-DOF Legs , 2013, IEEE/ASME Transactions on Mechatronics.

[157]  Santosh Devasia,et al.  Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes , 2006 .

[158]  John D. W. Madden,et al.  Twisted Lines : Artificial muscle and advanced instruments can be formed from nylon threads and fabric. , 2015, IEEE Pulse.

[159]  P. Dubois,et al.  Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers , 2009 .

[160]  Nikolaus Correll,et al.  Will robots be bodies with brains or brains with bodies? , 2017, Science Robotics.

[161]  Tae I. Um,et al.  A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions , 2011 .

[162]  P. McHugh,et al.  A review on dielectric elastomer actuators, technology, applications, and challenges , 2008 .

[163]  Paolo Dario,et al.  A new design methodology of electrostrictive actuators for bio-inspired robotics , 2009 .

[164]  Robert J. Wood,et al.  Biologically-inspired locomotion of a 2g hexapod robot , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[165]  Aleksandar Subic,et al.  Designing shape memory alloy linear actuators: A review , 2017 .

[166]  W. Zaki,et al.  A review of constitutive models and modeling techniques for shape memory alloys , 2016 .

[167]  Yonas Tadesse,et al.  Compact and low-cost humanoid hand powered by nylon artificial muscles , 2017, Bioinspiration & biomimetics.

[168]  Allan Joshua Veale,et al.  Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies. , 2016, Medical engineering & physics.

[169]  Robert J. Wood,et al.  Modeling of Soft Fiber-Reinforced Bending Actuators , 2015, IEEE Transactions on Robotics.

[170]  G. Spinks A TREATISE ON HIGHLY TWISTED ARTIFICIAL MUSCLE : THERMALLY DRIVEN SHAPE MEMORY ALLOY AND COILED NYLON ACTUATORS , 2015 .

[171]  In-Won Park,et al.  Impedance controlled twisted string actuators for tensegrity robots , 2014, 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014).

[172]  Kinji Asaka,et al.  Recent advances in ionic polymer–metal composite actuators and their modeling and applications , 2013 .

[173]  Xiangyang Zhu,et al.  Modeling of Viscoelastic Electromechanical Behavior in a Soft Dielectric Elastomer Actuator , 2017, IEEE Transactions on Robotics.

[174]  Kevin O'Brien,et al.  Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides , 2016, Science Robotics.

[175]  Kristin L. Wood,et al.  Locomotion Study of a Standing Wave Driven Piezoelectric Miniature Robot for Bi-Directional Motion , 2017, IEEE Transactions on Robotics.

[176]  Ja Choon Koo,et al.  Differential hysteresis modeling with adaptive parameter estimation of a super-coiled polymer actuator , 2017, 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[177]  Y. Cohen Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality , 2001 .

[178]  Kyung-Soo Kim,et al.  Designing Anthropomorphic Robot Hand With Active Dual-Mode Twisted String Actuation Mechanism and Tiny Tension Sensors , 2017, IEEE Robotics and Automation Letters.

[179]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[180]  Shaoze Yan,et al.  A 3-DOFs mobile robot driven by a piezoelectric actuator , 2006 .

[181]  Wenlin Chen,et al.  A novel discrete adaptive sliding-mode-like control method for ionic polymer–metal composite manipulators , 2013 .

[182]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[183]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[184]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[185]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[186]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[187]  Hosang Jung,et al.  A robotic finger driven by twisted and coiled polymer actuator , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[188]  Junji Furusho,et al.  Development of a Compact Magnetorheological Fluid Clutch for Human-Friendly Actuator , 2010, Adv. Robotics.

[189]  Hashem Ashrafiuon,et al.  Position Control of a Three-link Shape Memory Alloy Actuated Robot , 2006 .

[190]  Rajendra Singh,et al.  Accurate Position Control of a Pneumatic Actuator , 1989, 1989 American Control Conference.

[191]  Min Hyeok Kim,et al.  An experimental study of force control of an IPMC actuated two-link manipulator using time-delay control , 2016 .

[192]  Yi Sun,et al.  A Fully Fabric-Based Bidirectional Soft Robotic Glove for Assistance and Rehabilitation of Hand Impaired Patients , 2017, IEEE Robotics and Automation Letters.

[193]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[194]  Guoqiang Li,et al.  Constitutive modeling of shape memory polymer based self-healing syntactic foam , 2010 .

[195]  Fionnuala Connolly,et al.  Automatic design of fiber-reinforced soft actuators for trajectory matching , 2016, Proceedings of the National Academy of Sciences.

[196]  Marc Behl,et al.  Shape-memory polymers with multiple transitions: complex actively moving polymers , 2013 .

[197]  Yi Sun,et al.  Sensor and actuator integrated low-profile robotic origami , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[198]  Franco Molteni,et al.  SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion , 2009, Journal of Materials Engineering and Performance.

[199]  M. Porfiri,et al.  Effect of electrode surface roughness on the electrical impedance of ionic polymer–metal composites , 2012 .

[200]  M. Frecker,et al.  Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures , 2014 .

[201]  Sung-hoon Ahn,et al.  A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications , 2012 .

[202]  K. Leang,et al.  Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics , 2014, IEEE Journal of Oceanic Engineering.

[203]  P. Polygerinos,et al.  Mechanical Programming of Soft Actuators by Varying Fiber Angle , 2015 .

[204]  James C. Weaver,et al.  Soft robotic sleeve supports heart function , 2017, Science Translational Medicine.

[205]  K. Gall,et al.  Shape-memory polymers for microelectromechanical systems , 2004, Journal of Microelectromechanical Systems.

[206]  Long Cheng,et al.  Modeling and control of piezoelectric inertia–friction actuators: review and future research directions , 2015 .

[207]  Jun Zhang,et al.  Modeling and Inverse Compensation of Hysteresis in Supercoiled Polymer Artificial Muscles , 2017, IEEE Robotics and Automation Letters.

[208]  Jaydev P. Desai,et al.  New Actuation Mechanism for Actively Cooled SMA Springs in a Neurosurgical Robot , 2017, IEEE Transactions on Robotics.

[209]  Michael Goldfarb,et al.  A compliant-mechanism-based three degree-of-freedom manipulator for small-scale manipulation , 2000, Robotica.

[210]  Jaydev P. Desai,et al.  Design, modeling and characterization of a novel meso-scale SMA-actuated torsion actuator , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[211]  Constantinos Mavroidis,et al.  Optimal design of shape memory alloy wire bundle actuators , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[212]  Robert J. Wood,et al.  A lightweight soft exosuit for gait assistance , 2013, 2013 IEEE International Conference on Robotics and Automation.

[213]  Kam K. Leang,et al.  An IPMC-enabled bio-inspired bending/twisting fin for underwater applications , 2012 .

[214]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[215]  Yeongjin Kim,et al.  Modeling and characterization of shape memory alloy springs with water cooling strategy in a neurosurgical robot , 2017, Journal of intelligent material systems and structures.

[216]  Ron Pelrine,et al.  High-Strain Actuator Materials Based on Dielectric Elastomers , 2000 .

[217]  Howard A. Baldwin Realizable Models of Muscle Function , 1969 .

[218]  Yong Zhu,et al.  Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications , 2012 .

[219]  R. Wood,et al.  Jumping on water: Surface tension–dominated jumping of water striders and robotic insects , 2015, Science.

[220]  Hugh M. Herr,et al.  New horizons for orthotic and prosthetic technology: artificial muscle for ambulation , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[221]  I. Spinella,et al.  Conceptual Design and Simulation of a Compact Shape Memory Actuator for Rotary Motion , 2009, Journal of Materials Engineering and Performance.

[222]  Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces. , 2015, ACS applied materials & interfaces.

[223]  Jun Zhang,et al.  Optimal compression of generalized Prandtl-Ishlinskii hysteresis models , 2015, Autom..

[224]  G. Whitesides,et al.  Buckling Pneumatic Linear Actuators Inspired by Muscle , 2016 .

[225]  Jaydev P. Desai,et al.  Design, development, and evaluation of an MRI-guided SMA spring-actuated neurosurgical robot , 2015, Int. J. Robotics Res..

[226]  Tingyu Cheng,et al.  Fast-moving soft electronic fish , 2017, Science Advances.

[227]  Xiaobo Tan,et al.  An integrated electroactive polymer sensor–actuator: design, model-based control, and performance characterization , 2016 .

[228]  M. Sitti,et al.  Soft Actuators for Small‐Scale Robotics , 2017, Advanced materials.

[229]  Jee-Hwan Ryu,et al.  Twisted String Actuation Systems: A Study of the Mathematical Model and a Comparison of Twisted Strings , 2014, IEEE/ASME Transactions on Mechatronics.

[230]  Martin B.G. Jun,et al.  Fuzzy PWM-PID control of cocontracting antagonistic shape memory alloy muscle pairs in an artificial finger , 2011 .

[231]  Gu-Yeon Wei,et al.  Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency , 2016 .

[232]  Peyman Yadmellat,et al.  Adaptive Control of a Hysteretic Magnetorheological Robot Actuator , 2016, IEEE/ASME Transactions on Mechatronics.

[233]  Dmitry Popov,et al.  Towards variable stiffness control of antagonistic twisted string actuators , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[234]  Lu-Ean Ooi,et al.  Application of voice coil actuator to the measurement of rubber mounts properties , 2016, 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE).

[235]  Nam Seo Goo,et al.  Behaviors and Performance Evaluation of a Lightweight Piezo-Composite Curved Actuator , 2001 .

[236]  A. Lendlein,et al.  Shape-memory polymers , 2002 .

[237]  Takashi Sonoda,et al.  Multi-fingered robotic hand employing strings transmission named “Twist Drive” , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[238]  W. Wagner,et al.  Dielectric elastomers – numerical modeling of nonlinear visco‐electroelasticity , 2012 .

[239]  Zhihang Ye,et al.  Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking , 2017 .

[240]  Seyed M. Mirvakili,et al.  Artificial Muscles: Mechanisms, Applications, and Challenges , 2018, Advanced materials.

[241]  Ronald Lumia,et al.  An IPMC microgripper with integrated actuator and sensing for constant finger-tip displacement , 2015 .

[242]  C. Natale,et al.  Modeling and Control of the Twisted String Actuation System , 2013, IEEE/ASME Transactions on Mechatronics.

[243]  Steven W. Meeks,et al.  Effects of one‐dimensional stress on piezoelectric ceramics , 1975 .

[244]  Michael C. Yip,et al.  High-performance robotic muscles from conductive nylon sewing thread , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[245]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[246]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[247]  Katsu Yamane,et al.  Design of a hopping mechanism using a voice coil actuator: Linear elastic actuator in parallel (LEAP) , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[248]  Ken Gall,et al.  Shape Memory Mechanics of an Elastic Memory Composite Resin , 2003 .

[249]  Ward Small,et al.  Biomedical applications of thermally activated shape memory polymers. , 2009, Journal of materials chemistry.

[250]  Kyu-Jin Cho,et al.  Review of biomimetic underwater robots using smart actuators , 2012 .

[251]  Bertrand Tondu,et al.  Modelling of the McKibben artificial muscle: A review , 2012 .

[252]  Luigi Fortuna,et al.  A nonlinear model for ionic polymer metal composites as actuators , 2007 .

[253]  Daniel M. Vogt,et al.  Batch Fabrication of Customizable Silicone‐Textile Composite Capacitive Strain Sensors for Human Motion Tracking , 2017 .

[254]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[255]  K. Tanaka,et al.  The Influence of Transformation Kinetics on Stress-Strain Relations of Shape Memory Alloys in Thermomechanical Processes , 1994 .

[256]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[257]  R. Ham,et al.  Compliant actuator designs , 2009, IEEE Robotics & Automation Magazine.

[258]  Ali Abbas,et al.  A physics based model for twisted and coiled actuator , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[259]  Min-Woo Han,et al.  An Overview of Shape Memory Alloy-Coupled Actuators and Robots. , 2017, Soft robotics.

[260]  Stephanie A. Wise,et al.  Displacement properties of RAINBOW and THUNDER piezoelectric actuators , 1998 .

[261]  S. Dubowsky,et al.  Large-scale failure modes of dielectric elastomer actuators , 2006 .

[262]  Amir Firouzeh,et al.  Stiffness Control With Shape Memory Polymer in Underactuated Robotic Origamis , 2017, IEEE Transactions on Robotics.

[263]  Carter S. Haines,et al.  Artificial Muscles from Fishing Line and Sewing Thread , 2014, Science.

[264]  Jun Zhang,et al.  Three-Dimensional Hysteresis Modeling of Robotic Artificial Muscles with Application to Shape Memory Alloy Actuators , 2017, Robotics: Science and Systems.