Strong diamagnetism for general domains and application

Nous considerons le Laplacien de Neumann avec champ magnetique constant dans un domaine regulier de R 2 . Si B designe l'intensite de ce champ et si λ 1 (B) designe la premiere valeur propre de ce Laplacien, il est demontre que λ 1 est une fonction monotone croissante de B pour B grand. En combinant avec des resultats anterieurs des auteurs, ceci implique la coincidence de toutes les definitions raisonables du troisieme champ critique pour les materiaux supraconducteurs de type II.

[1]  Superconductivity near critical temperature , 2003 .

[2]  Patricia Bauman,et al.  Stable Nucleation for the Ginzburg-Landau System with an Applied Magnetic Field , 1998 .

[3]  V. Bonnaillie-Noel,et al.  SUPERCONDUCTIVITY IN DOMAINS WITH CORNERS , 2007 .

[4]  Bernard Helffer,et al.  Upper critical field and location of surface nucleation of superconductivity , 2003 .

[5]  P. Silverman,et al.  Type II superconductivity , 1969 .

[6]  M. Loss,et al.  Optimal heat kernel estimates for schrödinger operators with magnetic fields in two dimensions , 1997 .

[7]  Daniel Phillips,et al.  The Breakdown of Superconductivity Due to Strong Fields for the Ginzburg-Landau Model , 1999, SIAM Rev..

[8]  Xing-Bin Pan,et al.  Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity , 1999 .

[9]  Percy Deift,et al.  Review: Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators , 1985 .

[10]  László Erdős Dia- and paramagnetism for nonhomogeneous magnetic fields , 1997 .

[11]  L. Erdős Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions , 2002 .

[12]  M. Dauge,et al.  Asymptotics for the Low-Lying Eigenstates of the Schrödinger Operator with Magnetic Field near Corners , 2006 .

[13]  B. Helffer,et al.  Magnetic Bottles in Connection with Superconductivity , 2001 .

[14]  Xing-Bin Pan,et al.  Eigenvalue problems of Ginzburg–Landau operator in bounded domains , 1999 .

[15]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[16]  Andrew J. Bernoff,et al.  Onset of superconductivity in decreasing fields for general domains , 1998 .

[17]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[18]  Bernard Helffer,et al.  Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian , 2006 .

[19]  P. Sternberg,et al.  Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity , 2000 .

[20]  B. Helffer,et al.  On the Third Critical Field in Ginzburg-Landau Theory , 2006 .

[21]  P. Sternberg On the Normal/Superconducting Phase Transition in the Presence of Large Magnetic Fields , 2000 .

[22]  Virginie Bonnaillie On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners , 2003 .