Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity

[1]  E. Neher,et al.  Ultrastructural Organization of Bovine Chromaffin Cell Cortex—Analysis by Cryofixation and Morphometry of Aspects Pertinent to Exocytosis , 1997, The Journal of cell biology.

[2]  R. J. Barnard,et al.  Stimulation of NSF ATPase Activity by α-SNAP Is Required for SNARE Complex Disassembly and Exocytosis , 1997, The Journal of cell biology.

[3]  T. Weimbs,et al.  Apical targeting in polarized epithelial cells: There's more afloat than rafts. , 1997, Trends in cell biology.

[4]  B. Gähwiler,et al.  Ca2+ or Sr2+ Partially Rescues Synaptic Transmission in Hippocampal Cultures Treated with Botulinum Toxin A and C, But Not Tetanus Toxin , 1997, The Journal of Neuroscience.

[5]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[6]  H. Horstmann,et al.  Transport, docking and exocytosis of single secretory granules in live chromaffin cells , 1997, Nature.

[7]  T. Martin Stages of regulated exocytosis. , 1997, Trends in cell biology.

[8]  E Neher,et al.  Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. , 1997, Biophysical journal.

[9]  P. Hanson,et al.  Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  P. Hanson,et al.  Neurotransmitter release — four years of SNARE complexes , 1997, Current Opinion in Neurobiology.

[11]  H. Pelham,et al.  Homotypic vacuolar fusion mediated by t- and v-SNAREs , 1997, Nature.

[12]  E. Neher,et al.  Rapid Exocytosis in Single Chromaffin Cells Recorded from Mouse Adrenal Slices , 1997, The Journal of Neuroscience.

[13]  J. Dolly,et al.  Importance of two adjacent C-terminal sequences of SNAP-25 in exocytosis from intact and permeabilized chromaffin cells revealed by inhibition with botulinum neurotoxins A and E. , 1997, Biochemistry.

[14]  E. Neher,et al.  Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. , 1997, Biophysical journal.

[15]  M. Gratzl,et al.  Adrenal chromaffin cells contain functionally different SNAP‐25 monomers and SNAP‐25/syntaxin heterodimers , 1996, FEBS letters.

[16]  B. Dasgupta,et al.  N-Ethylmaleimide-sensitive Factor Acts at a Prefusion ATP-dependent Step in Ca2+-activated Exocytosis* , 1996, The Journal of Biological Chemistry.

[17]  M. Colombo,et al.  A Possible Predocking Attachment Site for N-Ethylmaleimide-sensitive Fusion Protein , 1996, The Journal of Biological Chemistry.

[18]  E. Neher,et al.  Protein Kinase C Enhances Exocytosis from Chromaffin Cells by Increasing the Size of the Readily Releasable Pool of Secretory Granules , 1996, Neuron.

[19]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[20]  J. Dolly,et al.  Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. , 1996, Biochemistry.

[21]  L. Tauc,et al.  Differences in the multiple step process of inhibition of neurotransmitter release induced by tetanus toxin and botulinum neurotoxins type A and B atAplysia synapses , 1996, Neuroscience.

[22]  G. Schiavo,et al.  The mechanism of action of tetanus and botulinum neurotoxins. , 1995, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement.

[23]  H. Horstmann,et al.  Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells , 1995, Neuron.

[24]  P. Hanson,et al.  Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex. , 1995, Biochemical and biophysical research communications.

[25]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[26]  E. Ikonen,et al.  Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells , 1995, Cell.

[27]  S. Nauenburg,et al.  Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. , 1995, The EMBO journal.

[28]  J. Dolly,et al.  Blockade by botulinum neurotoxin B of catecholamine release from adrenochromaffin cells correlates with its cleavage of synaptobrevin and a homologue present on the granules. , 1995, Biochemistry.

[29]  T. Takenawa,et al.  ATP-dependent inositide phosphorylation required for Ca2+-activated secretion , 1995, Nature.

[30]  K. Gillis Techniques for Membrane Capacitance Measurements , 1995 .

[31]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[32]  R S Zucker,et al.  Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. , 1994, Biophysical journal.

[33]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[34]  R. Jahn,et al.  Clostridial neurotoxins: new tools for dissecting exocytosis. , 1994, Trends in cell biology.

[35]  T. Südhof,et al.  Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. , 1994, The Journal of biological chemistry.

[36]  G. Ellis‐Davies,et al.  Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Hay,et al.  Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion , 1993, Nature.

[38]  R. Jahn,et al.  Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC‐1/syntaxin. , 1993, The EMBO journal.

[39]  E. Neher,et al.  A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. , 1993, Science.

[40]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[41]  W. Almers,et al.  A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs , 1993, Neuron.

[42]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[43]  R. Zucker,et al.  Multiple calcium-dependent processes related to secretion in bovine chromaffin cells , 1993, Neuron.

[44]  M. Verhage,et al.  Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. , 1992, The Journal of biological chemistry.

[45]  R. Holz,et al.  Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. , 1992, The Journal of biological chemistry.

[46]  D. Eberhard,et al.  MgATP-independent and MgATP-dependent exocytosis. Evidence that MgATP primes adrenal chromaffin cells to undergo exocytosis. , 1989, The Journal of biological chemistry.

[47]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[48]  E Neher,et al.  Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.