Determinism, noise, and spurious estimations in a generalised model of population growth

[1]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[2]  On the von Bertalanffy growth curve. , 1966, Growth.

[3]  On the von Bertalanffy growth curve. , 1966 .

[4]  M E Gilpin,et al.  Competition between species: theoretical models and experimental tests. , 1973, Theoretical population biology.

[5]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[6]  B. Øksendal Stochastic Differential Equations , 1985 .

[7]  Morita,et al.  Simple analytical solution for multiplicative nonlinear stochastic differential equations by a perturbation technique. , 1986, Physical review. A, General physics.

[8]  D. Roff Predicting Body Size with Life History ModelsSimple life history models can help evaluate the importance of ecological factors in the evolution of body size , 1986 .

[9]  E. Szathmáry,et al.  Group selection of early replicators and the origin of life. , 1987, Journal of theoretical biology.

[10]  Eric Renshaw Modelling biological populations in space and time , 1990 .

[11]  P. Hänggi,et al.  Activated barrier crossing : applications in physics, chemistry and biology , 1993 .

[12]  Peter Hänggi,et al.  Escape over fluctuating barriers driven by colored noise , 1994 .

[13]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  W. Kunin,et al.  Extinction risk and the 1/f family of noise models. , 1999, Theoretical population biology.

[15]  M A Muñoz,et al.  Recent results on multiplicative noise. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Microscopic dynamics underlying anomalous diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  J N Smith,et al.  Estimating the time to extinction in an island population of song sparrows , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[19]  X. Mao,et al.  Environmental Brownian noise suppresses explosions in population dynamics , 2002 .

[20]  Celia Anteneodo,et al.  Multiplicative noise: A mechanism leading to nonextensive statistical mechanics , 2002 .

[21]  Zeljko Bajzer,et al.  Combining Gompertzian growth and cell population dynamics. , 2003, Mathematical biosciences.

[22]  Kwok Sau Fa,et al.  Linear Langevin equation with time-dependent drift and multiplicative noise term: exact study , 2003 .

[23]  B. Ai,et al.  Correlated noise in a logistic growth model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  R. Lande,et al.  Stochastic Population Dynamics in Ecology and Conservation , 2003 .

[25]  R. Friedrich,et al.  On a quantitative method to analyze dynamical and measurement noise , 2003 .

[26]  Population explosion suppressed by noise: stationary distributions and how to simulate them , 2004, cond-mat/0412476.

[27]  Bernd Blasius,et al.  Extinction risk, coloured noise and the scaling of variance. , 2005, Theoretical population biology.

[28]  Antal Jakovác,et al.  Power-law tails from multiplicative noise. , 2005, Physical review letters.

[29]  Mark Pagel,et al.  On the Regulation of Populations of Mammals, Birds, Fish, and Insects , 2005, Science.

[30]  Harold P. de Vladar,et al.  Density-dependence as a size-independent regulatory mechanism. , 2005, Journal of theoretical biology.