Bayesian Analysis of Factorial Designs

This article provides a Bayes factor approach to multiway analysis of variance (ANOVA) that allows researchers to state graded evidence for effects or invariances as determined by the data. ANOVA is conceptualized as a hierarchical model where levels are clustered within factors. The development is comprehensive in that it includes Bayes factors for fixed and random effects and for within-subjects, between-subjects, and mixed designs. Different model construction and comparison strategies are discussed, and an example is provided. We show how Bayes factors may be computed with BayesFactor package in R and with the JASP statistical package.

[1]  Zoltan Dienes,et al.  Using Bayes to get the most out of non-significant results , 2014, Front. Psychol..

[2]  G. Cumming,et al.  The New Statistics , 2014, Psychological science.

[3]  Jeffrey N. Rouder,et al.  A hierarchical model for estimating response time distributions , 2005, Psychonomic bulletin & review.

[4]  A. Zellner,et al.  Posterior odds ratios for selected regression hypotheses , 1980 .

[5]  Cosma Rohilla Shalizi,et al.  Philosophy and the practice of Bayesian statistics. , 2010, The British journal of mathematical and statistical psychology.

[6]  C. Gallistel,et al.  Preverbal and verbal counting and computation , 1992, Cognition.

[7]  D. Bem Feeling the future: experimental evidence for anomalous retroactive influences on cognition and affect. , 2011, Journal of personality and social psychology.

[8]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[9]  B. Efron,et al.  Stein's Paradox in Statistics , 1977 .

[10]  J. Berger The case for objective Bayesian analysis , 2006 .

[11]  Richard D. Morey,et al.  Simple relation between Bayesian order-restricted and point-null hypothesis tests , 2014 .

[12]  Jan-Willem Romeijn,et al.  The humble Bayesian: model checking from a fully Bayesian perspective. , 2013, The British journal of mathematical and statistical psychology.

[13]  E. Wagenmakers,et al.  Why psychologists must change the way they analyze their data: the case of psi: comment on Bem (2011). , 2011, Journal of personality and social psychology.

[14]  J. Berger,et al.  Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence , 1987 .

[15]  Jacob Cohen The earth is round (p < .05) , 1994 .

[16]  Charles Stein,et al.  An Example of Wide Discrepancy Between Fiducial and Confidence Intervals , 1959 .

[17]  Jeffrey N. Rouder,et al.  Why Hypothesis Tests Are Essential for Psychological Science , 2014, Psychological science.

[18]  J. Tukey,et al.  AVERAGE VALUES OF MEAN SQUARES IN FACTORIALS , 1956 .

[19]  E. Wagenmakers A practical solution to the pervasive problems ofp values , 2007, Psychonomic bulletin & review.

[20]  J. Falmagne Elements of psychophysical theory , 1985 .

[21]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[22]  ROBERT S. MOYER,et al.  Time required for Judgements of Numerical Inequality , 1967, Nature.

[23]  Jeffrey N. Rouder,et al.  Bayes factor approaches for testing interval null hypotheses. , 2011, Psychological methods.

[24]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[25]  Jeffrey N. Rouder,et al.  Default Bayes factors for ANOVA designs , 2012 .

[26]  Jie W Weiss,et al.  Bayesian Statistical Inference for Psychological Research , 2008 .

[27]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[28]  J. Nelder The Selection of Terms in Response-Surface Models—How Strong is the Weak-Heredity Principle? , 1998 .

[29]  James O. Berger,et al.  Statistical Analysis and the Illusion of Objectivity , 1988 .

[30]  Michael Goldstein,et al.  Subjective Bayesian Analysis: Principles and Practice , 2006 .

[31]  Jeffrey N. Rouder,et al.  A Bayes factor meta-analysis of Bem’s ESP claim , 2011, Psychonomic bulletin & review.

[32]  Jeffrey N. Rouder,et al.  Bayesian t tests for accepting and rejecting the null hypothesis , 2009, Psychonomic bulletin & review.

[33]  B. Efron Bayesians, Frequentists, and Scientists , 2005 .

[34]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[35]  C. Gallistel,et al.  The Importance of Proving the Null , 2022 .

[36]  Stanislas Dehaene,et al.  The neural basis of the Weber–Fechner law: a logarithmic mental number line , 2003, Trends in Cognitive Sciences.

[37]  B. M. Hill Lindley's Paradox: Comment , 1982 .

[38]  M. Aitkin,et al.  Bayes factors: Prior sensitivity and model generalizability , 2008 .

[39]  A. Gelman,et al.  Rich State, Poor State, Red State, Blue State: What's the Matter with Connecticut? , 2005 .

[40]  M. J. Bayarri,et al.  Extending conventional priors for testing general hypotheses in linear models , 2007 .

[41]  P. Meehl Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. , 1978 .

[42]  J. Rouder,et al.  Default Bayes Factors for Model Selection in Regression , 2012, Multivariate behavioral research.

[43]  A. Gelman Analysis of variance: Why it is more important than ever? , 2005, math/0504499.

[44]  J. Kruschke Bayesian estimation supersedes the t test. , 2013, Journal of experimental psychology. General.

[45]  M. Clyde,et al.  Mixtures of g Priors for Bayesian Variable Selection , 2008 .

[46]  John K Kruschke,et al.  Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison , 2011, Perspectives on psychological science : a journal of the Association for Psychological Science.