Nanoscale thermal transport

Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid–solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The promise of improved thermoelectric materials and problems of thermal management of optoelectronic devices have stimulated extensive studies of semiconductor superlattices; agreement between experiment and theory is generally poor. Advances in measurement methods, e.g., the 3ω method, time-domain thermoreflectance, sources of coherent phonons, microfabricated test structures, and the scanning thermal microscope, are enabling new capabilities for nanoscale thermal metrology.

[1]  XXXII. On the calorific effects of magneto-electricity, and on the mechanical value of heat , 1843 .

[2]  R. Franz,et al.  Ueber die Wärme-Leitungsfähigkeit der Metalle , 1853 .

[3]  The analytical theory of heat by Joseph Fourier ; translated, with notes, by Alexander Freeman ; edited for the Syndics of the University Press. , 1878 .

[4]  A. Einstein Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme [AdP 22, 180 (1907)] , 2005, Annalen der Physik.

[5]  P. Debye Zur Theorie der spezifischen Wärmen , 1912 .

[6]  W. H. McCrea,et al.  Theoretical astrophysics : atomic theory and the analysis of stellar atmospheres and envelopes , 1936 .

[7]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[8]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[9]  C. Starr The copper oxide rectifier , 1948, Electrical Engineering.

[10]  Martin E. Barzelay,et al.  Effect of pressure on thermal conductance of contact joints , 1955 .

[11]  I. Amdur,et al.  Kinetic Theory of Gases , 1959 .

[12]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[13]  L. Challis,et al.  Heat transfer between solids and liquid helium II , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[15]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[16]  M. G. Holland Phonon Scattering in Semiconductors From Thermal Conductivity Studies , 1964 .

[17]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[18]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[19]  C. Gorter,et al.  Progress in low temperature physics , 1964 .

[20]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[21]  A. Clausing Heat transfer at the interface of dissimilar metals - The influence of thermal strain. , 1966 .

[22]  R. Guyer,et al.  Solution of the Linearized Phonon Boltzmann Equation , 1966 .

[23]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[24]  P. Klemens,et al.  LATTICE THERMAL CONDUCTIVITY AND DEVIATIONS FROM MATTHIESSEN'S RULE FOR DILUTE ALLOYS OF TIN WITH CADMIUM. , 1972 .

[25]  Martin A. Afromowitz,et al.  Thermal conductivity of Ga1−xAlxAs alloys , 1973 .

[26]  M. Levitt,et al.  Computer simulation of protein folding , 1975, Nature.

[27]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[28]  W. E. Lawrence,et al.  Low-temperature electrical and thermal resistivities of potassium: Deviations from Matthiessen's rule , 1977 .

[29]  J. C. Garland,et al.  Electrical transport and optical properties of inhomogeneous media , 1978 .

[30]  H. Juretschke,et al.  Introduction to Solid-State Theory , 1978 .

[31]  H. Kinder,et al.  Absence of Anomalous Kapitza Conductance on Freshly Cleaved Surfaces , 1978 .

[32]  A. Gossard,et al.  Selective Transmission of High-Frequency Phonons by a Superlattice: The , 1979 .

[33]  G. Mahan Many-particle physics , 1981 .

[34]  C. Moglestue,et al.  Monte Carlo particle modelling of small semiconductor devices , 1982 .

[35]  John D. Dow,et al.  Thermal conductivity of superlattices , 1982 .

[36]  William G. Hoover,et al.  High-strain-rate plastic flow studied via nonequilibrium molecular dynamics , 1982 .

[37]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[38]  Albert Macovski,et al.  Medical imaging systems , 1983 .

[39]  W. Eisenmenger,et al.  Phonon Scattering in Condensed Matter , 1984 .

[40]  G. Mahan Hot electrons in one dimension , 1985 .

[41]  Thomas,et al.  Direct observation of ballistic transport in GaAs. , 1985, Physical review letters.

[42]  Heremans,et al.  Thermal conductivity and thermopower of vapor-grown graphite fibers. , 1985, Physical review. B, Condensed matter.

[43]  G. Eesley,et al.  Transient thermoreflectance from thin metal films , 1986, Annual Meeting Optical Society of America.

[44]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[45]  H. K. Wickramasinghe,et al.  Scanning thermal profiler , 1986 .

[46]  Jonathan Zachary Tischler,et al.  Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation , 1986 .

[47]  F. Warkusz,et al.  Electrical Conductivity of Thin Wires , 1986 .

[48]  G. B. Stringfellow,et al.  OMVPE growth of InP and Ga0.47ln0.53as using ethyldimethylindium , 1986 .

[49]  Takafumi Yao,et al.  Thermal properties of AlAs/GaAs superlattices , 1987 .

[50]  Pohl,et al.  Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.

[51]  Fischer,et al.  Phonon radiative heat transfer and surface scattering. , 1988, Physical review. B, Condensed matter.

[52]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[53]  Clemens,et al.  Time-resolved thermal transport in compositionally modulated metal films. , 1988, Physical review. B, Condensed matter.

[54]  Goodnick,et al.  Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation. , 1989, Physical review. B, Condensed matter.

[55]  Young,et al.  Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. , 1989, Physical review. B, Condensed matter.

[56]  Minoru Toda,et al.  Springer Series in Solid-State Sciences , 1989 .

[57]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[58]  William R. Frensley,et al.  Boundary conditions for open quantum systems driven far from equilibrium , 1990 .

[59]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[60]  Yu.,et al.  Phonon temperature overshoot in GaAs excited by subpicosecond laser pulses. , 1990, Physical review letters.

[61]  Guinan,et al.  New mechanism of defect production in metals: A molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades. , 1991, Physical review letters.

[62]  M. Brewster Thermal Radiative Transfer and Properties , 1992 .

[63]  L. Jehring,et al.  Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases. 3rd edition. Cambridge etc., Cambridge University Press 1990. XXIV, 422 pp., £ 19.50 P/b. ISBN 0-521-40844-X , 1992 .

[64]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[65]  J. Berryman Single‐scattering approximations for coefficients in Biot’s equations of poroelasticity , 1992 .

[66]  W. Bron,et al.  Interaction of an electron-hole plasma with optical phonons in GaP. , 1992, Physical review letters.

[67]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[68]  Hicks,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[69]  C. Tien,et al.  Thermal conductivities of quantum well structures , 1993 .

[70]  Fischetti,et al.  Monte Carlo study of electron transport in silicon inversion layers. , 1993, Physical review. B, Condensed matter.

[71]  Christer Svensson,et al.  Quantum interference devices and field‐effect transistors: A switch energy comparison , 1993 .

[72]  P. Bhattacharya,et al.  Semiconductor Optoelectronic Devices , 1993 .

[73]  A. Majumdar Microscale Heat Conduction in Dielectric Thin Films , 1993 .

[74]  Bo Han,et al.  Anharmonic thermal resistivity of dielectric crystals at low temperatures. , 1993, Physical review. B, Condensed matter.

[75]  Allen,et al.  Thermal conductivity of disordered harmonic solids. , 1993, Physical review. B, Condensed matter.

[76]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[77]  K. Weiss,et al.  Kapitza conduction by thin lossy surface layers , 1993 .

[78]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[79]  Wei,et al.  Thermal conductivity of isotopically modified single crystal diamond. , 1993, Physical review letters.

[80]  J. Olson,et al.  Kapitza resistance between silicon and helium-4 , 1994 .

[81]  Overhauser Aw,et al.  Electronic Kapitza conductance at a diamond-Pb interface. , 1994 .

[82]  Kenneth E. Goodson,et al.  Thermal conduction in metallized silicon‐dioxide layers on silicon , 1994 .

[83]  D. Cahill,et al.  Thermal conductivity of a-Si:H thin films. , 1994, Physical review. B, Condensed matter.

[84]  Frensley,et al.  Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation. , 1994, Physical review. B, Condensed matter.

[85]  R. Peterson Direct simulation of phonon-mediated heat transfer in a Debye crystal , 1994 .

[86]  C. Bozada,et al.  Citric Acid Etching of GaAs1 − x Sb x , Al0.5Ga0.5Sb , and InAs for Heterostructure Device Fabrication , 1994 .

[87]  Kapitza phonon transmission from clean H-silicon(111) surfaces into liquid helium† , 1995 .

[88]  A. K. Verma,et al.  Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure , 1995 .

[89]  Gang Chen,et al.  Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles , 1996 .

[90]  H. Pollock,et al.  Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry , 1996 .

[91]  Resonant-mode conversion and transmission of phonons in superlattices. , 1996, Physical review. B, Condensed matter.

[92]  A. Majumdar,et al.  Concurrent thermal and electrical modeling of sub‐micrometer silicon devices , 1996 .

[93]  Kenneth E. Goodson Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures , 1996 .

[94]  Thermal transport across boundaries in diamond structure materials , 1996 .

[95]  Humphrey J. Maris,et al.  Improved apparatus for picosecond pump‐and‐probe optical measurements , 1996 .

[96]  W. Kaiser,et al.  Ballistic-Electron-Emission Microscopy: A Nanometer-Scale Probe of Interfaces and Carrier Transport , 1996 .

[97]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[98]  Rama Venkatasubramanian,et al.  Thermal conductivity of Si–Ge superlattices , 1997 .

[99]  Roberto Merlin,et al.  Generating coherent THz phonons with light pulses , 1997 .

[100]  I. Silier,et al.  Thermal conductivity of isotopically enriched Si , 1997 .

[101]  Jeremy J. Baumberg,et al.  Ultrafast Acoustic Phonon Ballistics in Semiconductor Heterostructures , 1997 .

[102]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[103]  Arun Majumdar,et al.  Scanning thermal microscopy of a vertical-cavity surface-emitting laser , 1997 .

[104]  Per Hyldgaard,et al.  Phonon superlattice transport , 1997 .

[105]  Influence of interface thermal conductance on the apparent thermal conductivity of thin films , 1997 .

[106]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[107]  Brian C. Sales,et al.  Thermoelectric Materials: New Approaches to an Old Problem , 1997 .

[108]  T. Marieb,et al.  Thermal Conductivity Measurements of Interlevel Dielectrics , 1997 .

[109]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[110]  T. Borca-Tasciuc,et al.  Thermal Conductivity and Heat Transfer in Superlattices , 1997 .

[111]  A. Sergeev Electronic Kapitza conductance due to inelastic electron-boundary scattering , 1998 .

[112]  Seungmin Lee,et al.  Thin-film materials and minimum thermal conductivity , 1998 .

[113]  S. Wong,et al.  Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates , 1996, Microelectromechanical Systems (MEMS).

[114]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[115]  H. Kurz,et al.  Coherent control of acoustic phonons in semiconductor superlattices , 1998 .

[116]  Christopher J. Stanton,et al.  LARGE COHERENT ACOUSTIC-PHONON OSCILLATION OBSERVED IN INGAN/GAN MULTIPLE-QUANTUM WELLS , 1999 .

[117]  Kenneth E. Goodson,et al.  Impact of molecular orientation on thermal conduction in spin-coated polyimide films , 1999 .

[118]  Alfred Grill,et al.  LOW DIELECTRIC CONSTANT FILMS PREPARED BY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION FROM TETRAMETHYLSILANE , 1999 .

[119]  Satoru Nakashima,et al.  Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy , 1999 .

[120]  K. H. Ploog,et al.  Thermal conductivity of GaAs/AlAs superlattices , 1999 .

[121]  N. Taketoshi,et al.  Observation of Heat Diffusion across Submicrometer Metal Thin Films Using a Picosecond Thermoreflectance Technique , 1999 .

[122]  Gang Chen Phonon wave heat conduction in thin films and superlattices , 1999 .

[123]  Lattice-dynamical calculation of phonon scattering at a disordered interface , 1998, cond-mat/9808025.

[124]  A. Majumdar SCANNING THERMAL MICROSCOPY , 1999, Annual Review of Materials Science.

[125]  M. Cardona,et al.  THERMAL-CONDUCTIVITY MEASUREMENTS OF GAAS/ALAS SUPERLATTICES USING A PICOSECOND OPTICAL PUMP-AND-PROBE TECHNIQUE , 1999 .

[126]  Yukihiro Tanaka,et al.  Phonon group velocity and thermal conduction in superlattices , 1999 .

[127]  Simulation of thermal conductivity and heat transport in solids , 1998, cond-mat/9811156.

[128]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[129]  D. K. Sadana,et al.  Nondestructive Evaluation of Interfaces in Bonded Silicon‐on‐Insulator Structures Using the Picosecond Ultrasonics Technique , 1999 .

[130]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[131]  Yu‐Lin Shen Analysis of Joule heating in multilevel interconnects , 1999 .

[132]  J. W. Wagner,et al.  INVESTIGATION OF DIFFUSE INTERFACES USING TIME-RESOLVED ACOUSTIC SPECTROSCOPY , 1999 .

[133]  D. Stone,et al.  Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition , 2000 .

[134]  Kang L. Wang,et al.  In-plane lattice thermal conductivity of a quantum-dot superlattice , 2000 .

[135]  M. Stroscio,et al.  Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell , 2000 .

[136]  S. M. Lee,et al.  Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface , 2000 .

[137]  Seungmin Lee,et al.  Interface thermal conductance and the thermal conductivity of multilayer thin films , 2000 .

[138]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[139]  Sebastian Volz,et al.  Molecular-dynamics simulation of thermal conductivity of silicon crystals , 2000 .

[140]  Kang L. Wang,et al.  Thermal conductivity of symmetrically strained Si/Ge superlattices , 2000 .

[141]  R. Landauer,et al.  Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988, IBM J. Res. Dev..

[142]  Gang Chen,et al.  Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques , 2000 .

[143]  A. Smith,et al.  THERMAL BOUNDARY RESISTANCE MEASUREMENTS USING A TRANSIENT THERMOREFLECTANCE TECHNIQUE , 2000 .

[144]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[145]  R. W. Henn,et al.  Thermal conductivity of isotopically enriched silicon , 2000 .

[146]  Li Shi,et al.  Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes , 2000 .

[147]  Maris,et al.  Study of phonon dispersion in silicon and germanium at long wavelengths using picosecond ultrasonics , 2000, Physical review letters.

[148]  P. Wayner,et al.  Thermal conductivity study of porous low-k dielectric materials , 2000 .

[149]  O. Paul,et al.  Process-dependent thin-film thermal conductivities for thermal CMOS MEMS , 2000, Journal of Microelectromechanical Systems.

[150]  Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices , 2000, cond-mat/0005028.

[151]  Images of the phonon propagation across twist-bonded crystals. , 2000, Physical review letters.

[152]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[153]  R. Venkatasubramanian Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures , 2000 .

[154]  T. Borca-Tasciuc,et al.  Phonon engineering in nanostructures for solid-state energy conversion , 2000 .

[155]  Kenneth E. Goodson,et al.  Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers , 2001 .

[156]  S. Pei,et al.  THERMAL CONDUCTIVITY OF InAs/AlSb SUPERLATTICES , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[157]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[158]  J. Ziman Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[159]  H. Everitt,et al.  Control of coherent acoustic phonons in semiconductor quantum wells. , 2001, Physical review letters.

[160]  Mohamed A. Osman,et al.  Temperature dependence of the thermal conductivity of single-wall carbon nanotubes , 2001 .

[161]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[162]  Phonon scattering and internal friction in dielectric and metallic films at low temperatures , 2000, cond-mat/0002413.

[163]  Thomas W. Kenny,et al.  Atomic force microscope cantilevers for combined thermomechanical data writing and reading , 2001 .

[164]  Transmission of coherent phonons through a metallic multilayer , 2001 .

[165]  Kenneth E. Goodson,et al.  Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors , 1999, Heat Transfer: Volume 3.

[166]  C. K. Maiti,et al.  Applications of Silicon-Germanium Heterostructure Devices , 2001 .

[167]  J. Valverde Molecular Modelling: Principles and Applications , 2001 .

[168]  Kaustav Banerjee,et al.  Interconnect limits on gigascale integration (GSI) in the 21st century , 2001, Proc. IEEE.

[169]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[170]  K. Goodson,et al.  THERMAL CONDUCTIVITY OF DOPED POLYSILICON LAYERS , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[171]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[172]  Li Shi,et al.  Design and batch fabrication of probes for sub-100 nm scanning thermal microscopy , 2001 .

[173]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[174]  K. Goodson,et al.  Thermal characterization of Bi2Te3/Sb2Te3 superlattices , 2001 .

[175]  M. C. Cross,et al.  Effect of surface roughness on the universal thermal conductance , 2001 .

[176]  T. Borca-Tasciuc,et al.  Data reduction in 3ω method for thin-film thermal conductivity determination , 2001 .

[177]  Kenneth E. Goodson,et al.  Measurement of ballistic phonon conduction near hotspots in silicon , 2001 .

[178]  A. Majumdar,et al.  Thermal Transport Mechanisms at Nanoscale Point Contacts , 2002 .

[179]  Yu-Ming Lin,et al.  Making electrical contacts to nanowires with a thick oxide coating , 2002 .

[180]  S. Phillpot,et al.  Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation , 2002 .

[181]  A. Majumdar,et al.  Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures , 2002 .

[182]  B. C. Daly,et al.  Measurements of the thermal conductivity of amorphous materials with low dielectric constants , 2002 .

[183]  B. C. Daly,et al.  Calculation of the thermal conductivity of superlattices by molecular dynamics simulation , 2002 .

[184]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[185]  D. Cahill,et al.  Thermal conductivity and sound velocities of hydrogen-silsesquioxane low-k dielectrics , 2002 .

[186]  Arun Majumdar,et al.  Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study , 2002 .

[187]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .

[188]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[189]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[190]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[191]  Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results With Simple Models , 2003, cond-mat/0306053.

[192]  Deyu Li,et al.  Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires , 2004 .

[193]  S. Semiatin,et al.  Microstructure, texture, and thermal conductivity of single-layer and multilayer thermal barrier coatings of Y2O3-Stabilized ZrO2 and Al2O3 made by physical vapor deposition , 2004 .

[194]  Lars Montelius,et al.  Nanowire Arrays Defined by Nanoimprint Lithography , 2004 .

[195]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[196]  Baowen Li,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[197]  A. Yamamoto,et al.  Thermoelectric properties and figure of merit of a Te-doped InSb bulk single crystal , 2005 .

[198]  C. N. Lau,et al.  Ballistic phonon thermal transport in multiwalled carbon nanotubes. , 2005, Physical review letters.

[199]  Jun Xu,et al.  Thermal Resistance of Nanowire-Plane Interfaces , 2005 .