Optimal Vibration Control for Uncertain Nonlinear Sampled-Data Systems With Actuator and Sensor Delays: Application to a Vehicle Suspension

[1]  Jing Lei Suboptimal vibration control for nonlinear suspension systems based on in-vehicle networks , 2011, Proceedings 2011 International Conference on System Science and Engineering.

[2]  Radhakant Padhi,et al.  Optimal blood glucose regulation of diabetic patients using single network adaptive critics , 2011 .

[3]  Fangfei Li,et al.  Controllability of Boolean control networks with time delays in states , 2011, Autom..

[4]  Jimoh Olarewaju Pedro,et al.  Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system , 2011, Int. J. Appl. Math. Comput. Sci..

[5]  Ghasem Alizadeh,et al.  A New Optimal Nonlinear Approach to Half Car Active Suspension Control , 2010 .

[6]  H. Maurer,et al.  Optimal control problems with delays in state and control variables subject to mixed control–state constraints , 2009 .

[7]  James Lam,et al.  Parameter-dependent input-delayed control of uncertain vehicle suspensions , 2008 .

[8]  Frederic Ward Williams,et al.  Symplectic analysis of vertical random vibration for coupled vehicle–track systems , 2008 .

[9]  Sing Kiong Nguang,et al.  State Feedback Control of Uncertain Networked Control Systems With Random Time Delays , 2008, IEEE Trans. Autom. Control..

[10]  Caro Lucas,et al.  Nonlinear optimal control of washing machine based on approximate solution of HJB equation , 2008 .

[11]  James Lam,et al.  A new delay system approach to network-based control , 2008, Autom..

[12]  Ming Xin,et al.  Reduced Order Suboptimal Control Design for a Class of Nonlinear Distributed Parameter Systems Using POD and θ-D Techniques , 2007, ACC.

[13]  Nong Zhang,et al.  H∞ control of active vehicle suspensions with actuator time delay , 2007 .

[14]  Zidong Wang,et al.  Robust H∞ control of stochastic time‐delay jumping systems with nonlinear disturbances , 2006 .

[15]  Grzegorz Litak,et al.  Chaotic Vibration of a Quarter-Car Model Excited by the Road Surface Profile , 2006, nlin/0601030.

[16]  An-Chyau Huang,et al.  Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings , 2005 .

[17]  Stephen P. Banks,et al.  Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria , 2004, Syst. Control. Lett..

[18]  Rolf Isermann,et al.  Mechatronic semi-active and active vehicle suspensions , 2004 .

[19]  Stephen P. Banks,et al.  Nonlinear optimal tracking control with application to super-tankers for autopilot design , 2004, Autom..

[20]  An-Chyau Huang,et al.  Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties , 2004, IEEE Trans. Control. Syst. Technol..

[21]  Javad Marzbanrad,et al.  Stochastic optimal preview control of a vehicle suspension , 2004 .

[22]  Wim Michiels,et al.  Finite spectrum assignment of unstable time-delay systems with a safe implementation , 2003, IEEE Trans. Autom. Control..

[23]  Lei Zuo,et al.  Structured H2 Optimization of Vehicle Suspensions Based on Multi-Wheel Models , 2003 .

[24]  Péter Gáspár,et al.  Design of Robust Controllers for Active Vehicle Suspension Using the Mixed µ Synthesis , 2003 .

[25]  James Lam,et al.  Non-fragile output feedback H∞ vehicle suspension control using genetic algorithm , 2003 .

[26]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[27]  Seung-Bok Choi,et al.  H∞ control of electrorheological suspension system subjected to parameter uncertainties , 2003 .

[28]  Peter J. Gawthrop,et al.  Optimal control of nonlinear systems: a predictive control approach , 2003, Autom..

[29]  Milan Vlach,et al.  Successive approximation method for non‐linear optimal control problems with application to a container crane problem , 2002 .

[30]  Davorin David Hrovat,et al.  Nonlinear H/sub /spl infin// control of active suspensions , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[31]  Niklas Karlsson,et al.  Nonlinear H, control of active suspensions , 2001 .

[32]  Pierre Apkarian,et al.  Nonlinear H∞ control for an integrated suspension system via parameterized linear matrix inequality characterizations , 2001, IEEE Trans. Control. Syst. Technol..

[33]  S. Senthil,et al.  STOCHASTIC OPTIMAL ACTIVE CONTROL OF A 2-DOF QUARTER CAR MODEL WITH NON-LINEAR PASSIVE SUSPENSION ELEMENTS , 1998 .

[34]  Paul I. Ro,et al.  A sliding mode controller for vehicle active suspension systems with non-linearities , 1998 .

[35]  D. Hrovat,et al.  Survey of Advanced Suspension Developments and Related Optimal Control Applications, , 1997, Autom..

[36]  E. M. Elbeheiry,et al.  OPTIMAL CONTROL OF VEHICLE RANDOM VIBRATION WITH CONSTRAINED SUSPENSION DEFLECTION , 1996 .

[37]  Ping Lu,et al.  Optimal predictive control of continuous nonlinear systems , 1995 .

[38]  Andrew G. Alleyne,et al.  Nonlinear adaptive control of active suspensions , 1995, IEEE Trans. Control. Syst. Technol..

[39]  Y.-C. Lin,et al.  Two-time-scale design of active suspension control using acceleration feedback , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[40]  G. V. Raju,et al.  Active Control of Non-stationary Response of Vehicles with Nonlinear Suspensions , 1992 .

[41]  A. Pearson,et al.  Feedback stabilization of linear autonomous time lag systems , 1986 .

[42]  S. A. Hassan,et al.  The Application of Linear Optimal Control Theory to the Design of Active Automotive Suspensions , 1986 .

[43]  A. Olbrot Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays , 1978 .

[44]  S. Mitra The Matrix Equation $AXB + CXD = E$ , 1977 .