Low temperature creep and irradiation creep in nuclear reactor applications: A critical review

[1]  G. Was,et al.  The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled Alloy 690 , 2015 .

[2]  H. Xue,et al.  A quantitative prediction model of SCC rate for nuclear structure materials in high temperature water based on crack tip creep strain rate , 2014 .

[3]  M. E. Kassner,et al.  Low temperature creep plasticity , 2014 .

[4]  Y. Bréchet,et al.  Irradiation creep of SA 304L and CW 316 stainless steels: Mechanical behaviour and microstructural aspects. Part I: Experimental results , 2011 .

[5]  Ivan Napoleão Bastos,et al.  A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride , 2008 .

[6]  V. Dubinko New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations , 2005 .

[7]  David Edwards,et al.  Review: Evolution of stacking fault tetrahedra and its role in defect accumulation under cascade damage conditions , 2004 .

[8]  M. E. Kassner Fundamentals of Creep in Metals and Alloys , 2004 .

[9]  J. Galvele,et al.  Effect of the strain rate on stress corrosion crack velocities in face-centred cubic alloys. A mechanistic interpretation , 2004 .

[10]  H. Leinonen Stress Corrosion Cracking and Life Prediction Evaluation of Austenitic Stainless Steels in Calcium Chloride Solution , 1996 .

[11]  F. Nabarro The physics of creep , 1995 .

[12]  C. Woo,et al.  Defect accumulation under cascade damage conditions , 1994 .

[13]  W. Schule,et al.  Neutron Irradiation Creep in Stainless Steel Alloys , 1994 .

[14]  G. Was,et al.  Creep and intergranular cracking of Ni-Cr-Fe-C in 360 °C argon , 1994 .

[15]  A. Atrens,et al.  Room-Temperature Creep of High-Strength Steels , 1994 .

[16]  R. Kane Slow strain rate testing for the evaluation of environmentally induced cracking : research and engineering applications , 1993 .

[17]  G. Was,et al.  Effects of grain boundary chemistry on the intergranular cracking behavior of Ni-16Cr-9Fe in high-temperature water , 1992 .

[18]  A. Atrens,et al.  Primary Creep and Stress-Corrosion Cracking , 1992 .

[19]  G. Was,et al.  Intergranular Cracking of Ni-16Cr-9Fe Alloys in High Temperature Water , 1991 .

[20]  Y. Garud An Incremental Damage Formulation for Stress Corrosion Cracking and Its Application to Crack Growth Interpretation Based on CERT Data , 1990 .

[21]  C. H. Shen,et al.  A mechanism for hydrogen-induced intergranular stress corrosion cracking in alloy 600 , 1990 .

[22]  R. N. Parkins 1990 Plenary Lecture: Strain Rate Effects in Stress Corrosion Cracking , 1990 .

[23]  M. Finnis,et al.  Irradiation creep models — an overview , 1988 .

[24]  D. Gelles,et al.  Irradiation creep mechanisms: An experimental perspective☆ , 1988 .

[25]  P. Moran,et al.  Influence of Strain on the Environmental Hydrogen-Assisted Cracking of a High-Strength Steel in Sodium Chloride Solution , 1988 .

[26]  A. Visser,et al.  The stress corrosion cracking of duplex stainless steel in H2S/CO2/Cl− environments , 1987 .

[27]  D. van Rooyen,et al.  Quantitative examination of stress corrosion cracking of alloy 600 in high temperature water , 1985 .

[28]  A. Freed,et al.  Room-temperature post-yield creep , 1982 .

[29]  D. V. Rooyen,et al.  Effect of Environmental Variables on the Stress Corrosion Cracking of Inconel 600 Steam Generator Tubing , 1981 .

[30]  D. V. Rooyen,et al.  Stress corrosion cracking of alloy 600 using the constant strain rate test , 1981 .

[31]  D. Kujawski,et al.  An experimental study of uniaxial creep, cyclic creep and relaxation of aisi type 304 stainless steel at room temperature , 1980 .

[32]  J. Scully The interaction of strain-rate and repassivation rate in stress corrosion crack propagation , 1980 .

[33]  H. Hirano,et al.  Effects of cyclic tensile loading on stress corrosion cracking susceptibility for sensitized Type 304 stainless steel in 290 C high purity water , 1979 .

[34]  L. K. Mansur,et al.  Irradiation creep by climb-enabled glide of dislocations resulting from preferred absorption of point defects , 1979 .

[35]  M. Hishida,et al.  Constant Strain Rate Testing of Type 304 Stainless Steel in High Temperature Water—Part I: Evaluation of Stress Corrosion Cracking Sensitivity , 1977 .

[36]  J. Bates,et al.  Dependence of irradiation creep on temperature and atom displacements in 20% cold worked type 316 stainless steel , 1977 .

[37]  D. Harries Irradiation creep in non-fissile metals and alloys , 1977 .

[38]  S. R. Bodner,et al.  Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials , 1975 .

[39]  M. Speight,et al.  Steady-state irradiation creep , 1974 .

[40]  G. Lewthwaite,et al.  Irradiation-creep in a materials testing reactor. , 1973 .

[41]  W. L. Clarke,et al.  Investigation of Stress Corrosion Cracking Susceptibility of Fe-Ni-Cr Alloys in Nuclear Reactor Water Environments , 1973 .

[42]  D. Vermilyea A Theory for the Propagation of Stress Corrosion Cracks in Metals , 1972 .

[43]  G. Lewthwaite The acceleration of climb-controlled creep by neutron irradiation , 1971 .

[44]  F. A. Leckie,et al.  Creep problems in structural members , 1969 .

[45]  H. E. Williamson,et al.  Stainless-Steel-Clad Fuel Rod Failures , 1965 .

[46]  R. Hesketh A transient irradiation creep in non-fissile metals , 1963 .

[47]  S. Terai Creep of 18-8 Stainless Steel at Room Temperature , 1959 .

[48]  E. Andrade Effect of Alpha-Ray Bombardment on Glide in Metal Single Crystals , 1945, Nature.