A Mathematical Model of the Skype VoIP Congestion Control Algorithm

Voice over Internet Protocol (VoIP) is an Internet application of ever increasing importance. The purpose of this note is to derive a mathematical model of the Skype VoIP congestion control. The proposed model is in the form of a non linear hybrid automation, and has been validated through extensive experiments. The dynamics of the Skype sending rate, the stability of its equilibrium points and the efficiency in bandwidth utilization while avoiding network instability are analyzed. Results show that, under network congestion, the Skype sending rate is driven by the packet loss ratio and matches the available bandwidth with a steady state finite error.

[1]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[2]  Luca De Cicco,et al.  A Mathematical Model of the Skype VoIP Congestion Control Algorithm , 2010, IEEE Transactions on Automatic Control.

[3]  Roch Lefebvre,et al.  The adaptive multirate wideband speech codec (AMR-WB) , 2002, IEEE Trans. Speech Audio Process..

[4]  Godred Fairhurst,et al.  Unicast UDP Usage Guidelines for Application Designers , 2008, RFC.

[5]  P. Biondi,et al.  Silver Needle in the Skype , 2006 .

[6]  Saverio Mascolo,et al.  Congestion control in high-speed communication networks using the Smith principle , 1999, Autom..

[7]  Mark Handley,et al.  Designing DCCP: congestion control without reliability , 2006, SIGCOMM.

[8]  João Pedro Hespanha,et al.  Modeling Communication Networks With Hybrid Systems , 2007, IEEE/ACM Transactions on Networking.

[9]  Luca De Cicco,et al.  An Experimental Investigation of the Congestion Control Used by Skype VoIP , 2007, WWIC.

[10]  Larry L. Peterson,et al.  TCP Vegas: End to End Congestion Avoidance on a Global Internet , 1995, IEEE J. Sel. Areas Commun..

[11]  Donald F. Towsley,et al.  A control theoretic analysis of RED , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[12]  Eddie Kohler,et al.  TCP Friendly Rate Control (TFRC): The Small-Packet (SP) Variant , 2007, RFC.

[13]  Cheng Jin,et al.  FAST TCP: Motivation, Architecture, Algorithms, Performance , 2006, IEEE/ACM Transactions on Networking.

[14]  Qian Zhang,et al.  Compound TCP: A scalable and TCP-friendly congestion control for high-speed networks , 2006 .

[15]  Donald F. Towsley,et al.  Analysis and design of controllers for AQM routers supporting TCP flows , 2002, IEEE Trans. Autom. Control..

[16]  V. Jacobson,et al.  Congestion avoidance and control , 1988, CCRV.

[17]  Wenyu Jiang,et al.  Comparison and optimization of packet loss repair methods on VoIP perceived quality under bursty loss , 2002, NOSSDAV '02.

[18]  Dario Rossi,et al.  Revealing skype traffic: when randomness plays with you , 2007, SIGCOMM '07.

[19]  Saverio Mascolo,et al.  Modeling the Internet congestion control using a Smith controller with input shaping , 2006 .

[20]  Derong Liu The Mathematics of Internet Congestion Control , 2005, IEEE Transactions on Automatic Control.

[21]  Luca De Cicco,et al.  Skype video responsiveness to bandwidth variations , 2008, NOSSDAV.

[22]  Luigi Rizzo,et al.  Dummynet: a simple approach to the evaluation of network protocols , 1997, CCRV.

[23]  Mark Handley,et al.  Equation-based congestion control for unicast applications , 2000, SIGCOMM.

[24]  Ravi Jain,et al.  An Experimental Study of the Skype Peer-to-Peer VoIP System , 2005, IPTPS.

[25]  Henning Schulzrinne,et al.  An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol , 2004, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[26]  Jörg Widmer,et al.  TCP Friendly Rate Control (TFRC): Protocol Specification , 2003, RFC.

[27]  Fernando Paganini,et al.  Internet congestion control , 2002 .

[28]  Eitan Altman,et al.  Congestion control as a stochastic control problem with action delays , 1999, Autom..