The Impact of Recombination on dN/dS within Recently Emerged Bacterial Clones

The development of next-generation sequencing platforms is set to reveal an unprecedented level of detail on short-term molecular evolutionary processes in bacteria. Here we re-analyse genome-wide single nucleotide polymorphism (SNP) datasets for recently emerged clones of methicillin resistant Staphylococcus aureus (MRSA) and Clostridium difficile. We note a highly significant enrichment of synonymous SNPs in those genes which have been affected by recombination, i.e. those genes on mobile elements designated “non-core” (in the case of S. aureus), or those core genes which have been affected by homologous replacements (S. aureus and C. difficile). This observation suggests that the previously documented decrease in dN/dS over time in bacteria applies not only to genomes of differing levels of divergence overall, but also to horizontally acquired genes of differing levels of divergence within a single genome. We also consider the role of increased drift acting on recently emerged, highly specialised clones, and the impact of recombination on selection at linked sites. This work has implications for a wide range of genomic analyses.

[1]  J. Burton,et al.  Rapid Pneumococcal Evolution in Response to Clinical Interventions , 2011, Science.

[2]  Sridhar Hannenhalli,et al.  Young proteins experience more variable selection pressures than old proteins. , 2010, Genome research.

[3]  F. Rousset,et al.  Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans? , 2010, The Journal of infectious diseases.

[4]  Vladislava Růžičková,et al.  Multilocus PCR typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure. , 2010, Environmental microbiology.

[5]  F. Hildebrand,et al.  Evidence of Selection upon Genomic GC-Content in Bacteria , 2010, PLoS genetics.

[6]  D. Petrov,et al.  Evidence That Mutation Is Universally Biased towards AT in Bacteria , 2010, PLoS genetics.

[7]  E. Rocha,et al.  Mutational Patterns Cannot Explain Genome Composition: Are There Any Neutral Sites in the Genomes of Bacteria? , 2010, PLoS genetics.

[8]  Giovanna Morelli,et al.  Microevolution of Helicobacter pylori during Prolonged Infection of Single Hosts and within Families , 2010, PLoS genetics.

[9]  Andries J. van Tonder,et al.  Evolutionary dynamics of Clostridium difficile over short and long time scales , 2010, Proceedings of the National Academy of Sciences.

[10]  J. M. Comeron,et al.  Local effects of limited recombination: historical perspective and consequences for population estimates of adaptive evolution. , 2010, The Journal of heredity.

[11]  J. Lindsay Genomic variation and evolution of Staphylococcus aureus. , 2010, International journal of medical microbiology : IJMM.

[12]  Julian Parkhill,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[13]  D. Robinson,et al.  Population Structure of a Hybrid Clonal Group of Methicillin-Resistant Staphylococcus aureus, ST239-MRSA-III , 2010, PloS one.

[14]  M. Quail,et al.  Genome Sequence of a Recently Emerged, Highly Transmissible, Multi-Antibiotic- and Antiseptic-Resistant Variant of Methicillin-Resistant Staphylococcus aureus, Sequence Type 239 (TW) , 2009, Journal of bacteriology.

[15]  A. van Belkum,et al.  First report on methicillin-resistant Staphylococcus aureus of Spa type T037, Sequence type 239, SCCmec type III/IIIA in Malaysia , 2009, European Journal of Clinical Microbiology & Infectious Diseases.

[16]  K. Konstantinidis,et al.  Genomic Insights into the Convergence and Pathogenicity Factors of Campylobacter jejuni and Campylobacter coli Species , 2009, Journal of bacteriology.

[17]  E. Feil,et al.  Comparisons between Geographically Diverse Samples of Carried Staphylococcus aureus , 2009, Journal of bacteriology.

[18]  T. Brettin,et al.  Molecular Evolutionary Consequences of Niche Restriction in Francisella tularensis, a Facultative Intracellular Pathogen , 2009, PLoS pathogens.

[19]  B. Charlesworth,et al.  Reduced Effectiveness of Selection Caused by a Lack of Recombination , 2009, Current Biology.

[20]  Julian Parkhill,et al.  A Comprehensive Survey of Single Nucleotide Polymorphisms (SNPs) across Mycobacterium bovis Strains and M. bovis BCG Vaccine Strains Refines the Genealogy and Defines a Minimal Set of SNPs That Separate Virulent M. bovis Strains and M. bovis BCG Strains , 2009, Infection and Immunity.

[21]  E. Feil,et al.  Predominance of the Hungarian clone (ST 239-III) among hospital-acquired meticillin-resistant Staphylococcus aureus isolates recovered throughout mainland China. , 2009, The Journal of hospital infection.

[22]  E. Rocha,et al.  The temporal dynamics of slightly deleterious mutations in Escherichia coli and Shigella spp. , 2009, Molecular biology and evolution.

[23]  A. Danchin,et al.  Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths , 2009, PLoS genetics.

[24]  Inna Dubchak,et al.  Trends in Prokaryotic Evolution Revealed by Comparison of Closely Related Bacterial and Archaeal Genomes , 2008, Journal of bacteriology.

[25]  J. Plotkin,et al.  The Population Genetics of dN/dS , 2008, PLoS genetics.

[26]  A. Hughes,et al.  Synonymous and nonsynonymous polymorphisms versus divergences in bacterial genomes. , 2008, Molecular biology and evolution.

[27]  J. Wain,et al.  High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi , 2008, Nature Genetics.

[28]  H. de Lencastre,et al.  Changing Patterns in Frequency of Recovery of Five Methicillin-Resistant Staphylococcus aureus Clones in Portuguese Hospitals: Surveillance over a 16-Year Period , 2008, Journal of Clinical Microbiology.

[29]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[30]  Howard Ochman,et al.  The Emergence and Fate of Horizontally Acquired Genes in Escherichia coli , 2008, PLoS Comput. Biol..

[31]  Ge Zhang,et al.  Rapid Detection of the Pandemic Methicillin-Resistant Staphylococcus aureus Clone ST 239, a Dominant Strain in Asian Hospitals , 2008, Journal of Clinical Microbiology.

[32]  E. Feil,et al.  The rise and fall of deleterious mutation. , 2007, Research in microbiology.

[33]  A. van Belkum,et al.  Replacement of methicillin-resistant Staphylococcus aureus clones in Hungary over time: a 10-year surveillance study. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[34]  R. Lin,et al.  Evolving EMRSA-15 epidemic in Singapore hospitals. , 2007, Journal of medical microbiology.

[35]  R. Beale,et al.  An outbreak in an intensive care unit of a strain of methicillin-resistant Staphylococcus aureus sequence type 239 associated with an increased rate of vascular access device-related bacteremia. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[36]  John Maynard Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[37]  M. McDonald,et al.  Use of a Single-Nucleotide Polymorphism Genotyping System To Demonstrate the Unique Epidemiology of Methicillin-Resistant Staphylococcus aureus in Remote Aboriginal Communities , 2006, Journal of Clinical Microbiology.

[38]  Richard S. Clifton-Hadley,et al.  Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis , 2006, Nature Reviews Microbiology.

[39]  Eduardo P C Rocha,et al.  Comparisons of dN/dS are time dependent for closely related bacterial genomes. , 2006, Journal of theoretical biology.

[40]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[41]  Teruyo Ito,et al.  Staphylococcal Cassette Chromosome mec (SCCmec) Typing of Methicillin-Resistant Staphylococcus aureus Strains Isolated in 11 Asian Countries: a Proposal for a New Nomenclature for SCCmec Elements , 2006, Antimicrobial Agents and Chemotherapy.

[42]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[43]  P. Francioli,et al.  Evidence for Clonal Evolution among Highly Polymorphic Genes in Methicillin-Resistant Staphylococcus aureus , 2006, Journal of bacteriology.

[44]  M. Holden,et al.  Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus , 2006, Functional & Integrative Genomics.

[45]  Alex van Belkum,et al.  The role of nasal carriage in Staphylococcus aureus infections. , 2005, The Lancet. Infectious diseases.

[46]  A. van Belkum,et al.  International spread of major clones of methicillin resistant Staphylococcus aureus: nosocomial endemicity of multi locus sequence type 239 in Saudi Arabia and Romania. , 2005, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[47]  D. Presgraves,et al.  Recombination Enhances Protein Adaptation in Drosophila melanogaster , 2005, Current Biology.

[48]  L. A. Teixeira,et al.  The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. , 2005, The Journal of infectious diseases.

[49]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[50]  Jing Liu,et al.  The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  K. Ko,et al.  Distribution of Major Genotypes among Methicillin-Resistant Staphylococcus aureus Clones in Asian Countries , 2005, Journal of Clinical Microbiology.

[52]  M. Holden,et al.  Staphylococcus aureus: superbug, super genome? , 2004, Trends in microbiology.

[53]  B. Barrell,et al.  Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  E. Feil Small change: keeping pace with microevolution , 2004, Nature Reviews Microbiology.

[55]  Ulrich Dobrindt,et al.  Genomic islands in pathogenic and environmental microorganisms , 2004, Nature Reviews Microbiology.

[56]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[57]  D. Robinson,et al.  Evolution of Staphylococcus aureus by Large Chromosomal Replacements , 2004, Journal of bacteriology.

[58]  B. Spratt,et al.  How Clonal Is Staphylococcus aureus? , 2003, Journal of bacteriology.

[59]  S. Pääbo,et al.  A neutral explanation for the correlation of diversity with recombination rates in humans. , 2003, American journal of human genetics.

[60]  B. Payseur,et al.  Selection at linked sites in the partial selfer Caenorhabditis elegans. , 2003, Molecular biology and evolution.

[61]  R. Novick Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. , 2003, Plasmid.

[62]  A. Tomasz,et al.  Frequent Recovery of a Single Clonal Type of Multidrug-Resistant Staphylococcus aureus from Patients in Two Hospitals in Taiwan and China , 2003, Journal of Clinical Microbiology.

[63]  Y. Nagai,et al.  Genome and virulence determinants of high virulence community-acquired MRSA , 2002, The Lancet.

[64]  C. Walsh,et al.  The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Hacker,et al.  Ecological fitness, genomic islands and bacterial pathogenicity , 2001, EMBO reports.

[66]  L. Duret,et al.  Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[68]  Nicholas P. J. Day,et al.  Multilocus Sequence Typing for Characterization of Methicillin-Resistant and Methicillin-Susceptible Clones ofStaphylococcus aureus , 2000, Journal of Clinical Microbiology.

[69]  J. Kaneko,et al.  Prophage, φPV83-pro, Carrying Panton-Valentine Leukocidin Genes, on the Staphylococcus aureus P83 Chromosome: Comparative Analysis of the Genome Structures of φPV83-pro, φPVL, φ11, and Other Phages , 2000 .

[70]  J. Kaneko,et al.  Prophage, phiPV83-pro, carrying panton-valentine leukocidin genes, on the Staphylococcus aureus P83 chromosome: comparative analysis of the genome structures of phiPV83-pro, phiPVL, phi11, and other phages. , 2000, Bioscience, biotechnology, and biochemistry.

[71]  B. Spratt,et al.  Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. , 2000, Journal of clinical microbiology.

[72]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Nachman Patterns of DNA variability at X-linked loci in Mus domesticus. , 1997, Genetics.

[75]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[76]  J. Hey,et al.  Reduced natural selection associated with low recombination in Drosophila melanogaster. , 1993, Molecular biology and evolution.

[77]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[78]  C. Aquadro,et al.  Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster , 1992, Nature.

[79]  J Hacker,et al.  Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. , 1990, Microbial pathogenesis.

[80]  J. Gale Hitch-Hiking Effect of a Favourable Gene , 1980 .

[81]  W. E. Ritter AS TO THE CAUSES OF EVOLUTION. , 1923, Science.