κ-exponential models from the geometrical viewpoint

We discuss the use of Kaniadakis’ κ-exponential in the construction of a statistical manifold modelled on Lebesgue spaces of real random variables. Some algebraic features of the deformed exponential models are considered. A chart is defined for each strictly positive densities; every other strictly positive density in a suitable neighborhood of the reference probability is represented by the centered lnκ likelihood.

[1]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[2]  Physics Letters , 1962, Nature.

[3]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  S. Amari Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .

[6]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[7]  Giovanni Pistone,et al.  An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One , 1995 .

[8]  Giovanni Pistone,et al.  Connections on non-parametric statistical manifolds by Orlicz space geometry , 1998 .

[9]  P. Gibilisco,et al.  CONNECTIONS ON STATISTICAL MANIFOLDS OF DENSITY OPERATORS BY GEOMETRY OF NONCOMMUTATIVE Lp-SPACES , 1999 .

[10]  Giovanni Pistone,et al.  The Exponential Statistical Manifold: Mean Parameters, Orthogonality and Space Transformations , 1999 .

[11]  H. Wynn,et al.  Algebraic Statistics: Computational Commutative Algebra in Statistics , 2000 .

[12]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[13]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[14]  On real Hilbertian info-manifolds , 2001 .

[15]  G. Kaniadakis,et al.  Non-linear kinetics underlying generalized statistics , 2001 .

[16]  G. Kaniadakis H-theorem and generalized entropies within the framework of nonlinear kinetics , 2001 .

[17]  J. Naudts Deformed exponentials and logarithms in generalized thermostatistics , 2002, cond-mat/0203489.

[18]  Malempati M. Rao,et al.  Applications Of Orlicz Spaces , 2002 .

[19]  Raymond Frederick Streater Quantum Orlicz Spaces in Information Geometry , 2004, Open Syst. Inf. Dyn..

[20]  A. Dawid,et al.  Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory , 2004, math/0410076.

[21]  J. Naudts Generalized thermostatistics and mean-field theory , 2002, cond-mat/0211444.

[22]  N. Ay,et al.  On a Notion of Linear Replicator Equations , 2005 .

[23]  A. Jenčová A construction of a nonparametric quantum information manifold. , 2005, math-ph/0511065.

[24]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: References , 2005 .

[25]  G. Kaniadakis,et al.  Statistical mechanics in the context of special relativity. II. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Shinto Eguchi,et al.  Local model uncertainty and incomplete‐data bias (with discussion) , 2005 .

[27]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[28]  D. Hinkley Annals of Statistics , 2006 .

[29]  Giovanni Pistone,et al.  Exponential statistical manifold , 2007 .

[30]  A. Ohara,et al.  Information geometry of q-Gaussian densities and behaviors of solutions to related diffusion equations , 2008, 0810.0624.

[31]  Jan Naudts,et al.  Generalised Exponential Families and Associated Entropy Functions , 2008, Entropy.

[32]  Seth Sullivant,et al.  Lectures on Algebraic Statistics , 2008 .

[33]  Eva Riccomagno,et al.  Algebraic and Geometric Methods in Statistics: Contingency tables , 2009 .

[34]  Henry P. Wynn,et al.  Algebraic and geometric methods in statistics , 2009 .