A potential with low point charges for pure siliceous zeolites

A modified CHARMM force‐field (ZHB potential) with low point charges for silica was previously proposed by Zimmerman et al. (J. Chem. Theory Comput. 2011, 7, 1695). The ZHB potential is advantageous for quantum mechanics/molecular mechanics simulations as it minimizes the electron spill‐out problems. In the same spirit, here we propose a modified ZHB potential (MZHB) by reformulating its bonding potential, while retaining the nonbonding potential as in the ZHB force‐field. We show that several structural and dynamic properties of silica, like the IR spectrum, distribution functions, mechanical properties, and negative thermal expansion computed using the MZHB potential agree well with experimental data. Further, transferability of MZHB is also tested for reproducing the crystallographic structures of several polymorphs of silica. © 2015 Wiley Periodicals, Inc.

[1]  Alexander D. MacKerell,et al.  Development of an empirical force field for silica. Application to the quartz-water interface. , 2006, The journal of physical chemistry. B.

[2]  Ana Primo,et al.  Zeolites as catalysts in oil refining. , 2014, Chemical Society reviews.

[3]  R. A. Santen,et al.  Fourier-transform infrared study of the protonation of the zeolitic lattice. Influence of silicon : aluminium ratio and structure , 1993 .

[4]  P. Gilot,et al.  A review of NOx reduction on zeolitic catalysts under diesel exhaust conditions , 1997 .

[5]  R. Downs,et al.  The pressure behavior of alpha cristobalite , 1994 .

[6]  C. R. A. Catlow,et al.  Interatomic potentials for SiO2 , 1984 .

[7]  Julian D. Gale,et al.  Analytical Free Energy Minimization of Silica Polymorphs , 1998 .

[8]  W. Hölderich,et al.  Industrial application of solid acid–base catalysts , 1999 .

[9]  Neil L. Allan,et al.  FREE-ENERGY DERIVATIVES AND STRUCTURE OPTIMIZATION WITHIN QUASIHARMONIC LATTICE DYNAMICS , 1997 .

[10]  Fuat E. Celik,et al.  Effects of Brønsted-acid site proximity on the oligomerization of propene in H-MFI , 2012 .

[11]  Ulrich Müller,et al.  Catalytic Applications of Zeolites in Chemical Industry , 2009 .

[12]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[13]  D. Weidner,et al.  Structure and elastic properties of quartz at pressure , 1980 .

[14]  Alessandro Laio,et al.  A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations , 2002 .

[15]  J. Sauer,et al.  Potential Functions for Silica and Zeolite Catalysts Based on ab Initio Calculations. 3. A Shell Model Ion Pair Potential for Silica and Aluminosilicates , 1996 .

[16]  Paul M Zimmerman,et al.  Selection and Validation of Charge and Lennard-Jones Parameters for QM/MM Simulations of Hydrocarbon Interactions with Zeolites. , 2011, Journal of chemical theory and computation.

[17]  Berend Smit,et al.  Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. , 2008, Chemical reviews.

[18]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[19]  Kramer,et al.  Force fields for silicas and aluminophosphates based on ab initio calculations. , 1990, Physical review letters.

[20]  Paul M. Zimmerman,et al.  Accurate Prediction of Hydrocarbon Interactions with Zeolites Utilizing Improved Exchange-Correlation Functionals and QM/MM Methods: Benchmark Calculations of Adsorption Enthalpies and Application to Ethene Methylation by Methanol , 2012 .

[21]  Joachim Sauer,et al.  Combining quantum mechanics and interatomic potential functions in ab initio studies of extended systems , 2000 .

[22]  H. Koningsveld High-temperature (350 K) orthorhombic framework structure of zeolite H-ZSM-5 , 1990 .

[23]  E. M. Flanigen,et al.  Infrared Structural Studies of Zeolite Frameworks , 1974 .

[24]  M. Attfield Strong negative thermal expansion in siliceous faujasite , 1998 .

[25]  Notker Rösch,et al.  Elastic Polarizable Environment Cluster Embedding Approach for Covalent Oxides and Zeolites Based on a Density Functional Method , 2003 .

[26]  D. Bibby,et al.  Synthesis of silica-sodalite from non-aqueous systems , 1985, Nature.

[27]  M. Head‐Gordon,et al.  Computational Study of p-Xylene Synthesis from Ethylene and 2,5-Dimethylfuran Catalyzed by H-BEA , 2014 .

[28]  Tamar Schlick,et al.  Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[29]  W. Vermeiren,et al.  Impact of Zeolites on the Petroleum and Petrochemical Industry , 2009 .

[30]  Kantorovich Thermoelastic properties of perfect crystals with nonprimitive lattices. I. General theory. , 1995, Physical review. B, Condensed matter.

[31]  P. A. Barrett,et al.  Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density , 1998 .

[32]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[33]  R. Arletti,et al.  Thermal behaviour of siliceous faujasite: further structural interpretation of negative thermal expansion , 2015 .

[34]  A. Cheetham,et al.  Synchrotron X-ray powder diffraction and computational investigation of purely siliceous zeolite Y under pressure. , 2004, Journal of the American Chemical Society.

[35]  C. Ania,et al.  Zeolite force fields and experimental siliceous frameworks in a comparative infrared study , 2012 .

[36]  De Man,et al.  The relation between zeolite framework structure and vibrational spectra , 1992 .

[37]  Paul M Zimmerman,et al.  Ab initio simulations reveal that reaction dynamics strongly affect product selectivity for the cracking of alkanes over H-MFI. , 2012, Journal of the American Chemical Society.

[38]  Paul Tavan,et al.  A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields , 1999 .

[39]  Joachim Sauer,et al.  Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica , 1994 .

[40]  M. Probst,et al.  Adsorption and diffusion of light alkanes on nanoporous faujasite catalysts investigated by molecular dynamics simulations , 2007 .

[41]  V. Nikolakis,et al.  Lattice Dynamics Simulation of Thermal Contraction of Faujasites , 2010 .

[42]  A. Hopfinger,et al.  Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field , 1991 .

[43]  N. Allan,et al.  The zero static internal stress approximation in lattice dynamics and the calculation of isotope effects on molar volumes , 1996 .

[44]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[45]  S. C. Rogers,et al.  QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis , 2003 .

[46]  R. Bell,et al.  Cation mobility and the sorption of chloroform in zeolite NaY: molecular dynamics study. , 2005, The journal of physical chemistry. B.

[47]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[48]  A. Cheetham,et al.  Powder Neutron Diffraction and 29Si MAS NMR Studies of Siliceous Zeolite-Y , 1993 .