[Structural biology of post-translational modifications of proteins].

A majority of proteins encoded in genomes of limited size are post-translationally diversified by covalent modifications such as glycosylation and ubiquitination. Although recent advances in structural proteomics have enabled high-throughput structure determination of proteins, structural analyses of post-translationally modified proteins remain challenging because of the lack of appropriate determination methods. Therefore, we developed methodologies for characterizing the post-translational modifications of proteins from the structural viewpoint, focusing especially on glycosylation and ubiquitination. For instance, we established a systematic method for structural glycomics to address broader issues, including glycosylation profiling and 3D structure analyses of glycoproteins. Our stable-isotope-assisted NMR techniques in conjunction with X-ray crystallographic approach provide valuable information at the atomic level on conformations, dynamics, and interactions of glycoproteins such as antibody and proteins involved in the ubiquitin-proteasome system. These studies provide the structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans and mechanistic insights into ubiquitination reactions in glycoprotein-fate determination in cells. These approaches will allow new possibilities for structural studies on post-translationally modified proteins of clinical, pathological, and pharmaceutical interests.