The Readability of Path‐Preserving Clusterings of Graphs

Graph visualization systems often exploit opaque metanodes to reduce visual clutter and improve the readability of large graphs. This filtering can be done in a path‐preserving way based on attribute values associated with the nodes of the graph. Despite extensive use of these representations, as far as we know, no formal experimentation exists to evaluate if they improve the readability of graphs.

[1]  Peter Eades,et al.  Journal of Graph Algorithms and Applications Navigating Clustered Graphs Using Force-directed Methods , 2022 .

[2]  James Abello,et al.  ASK-GraphView: A Large Scale Graph Visualization System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Daniel W. Archambault,et al.  Structural differences between two graphs through hierarchies , 2009, Graphics Interface.

[4]  Helen C. Purchase,et al.  Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.

[5]  Bill Cheswick,et al.  Mapping and Visualizing the Internet , 2000, USENIX Annual Technical Conference, General Track.

[6]  Yehuda Koren,et al.  Topological fisheye views for visualizing large graphs , 2004, IEEE Transactions on Visualization and Computer Graphics.

[7]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[8]  Peter Eades,et al.  Multilevel Visualization of Clustered Graphs , 1996, GD.

[9]  Martin Wattenberg,et al.  Mapping Text with Phrase Nets , 2009, IEEE Transactions on Visualization and Computer Graphics.

[10]  Jarke J. van Wijk,et al.  Interactive Visualization of Small World Graphs , 2004, IEEE Symposium on Information Visualization.

[11]  Weidong Huang,et al.  A graph reading behavior: Geodesic-path tendency , 2009, 2009 IEEE Pacific Visualization Symposium.

[12]  Andreas Ludwig,et al.  A Fast Adaptive Layout Algorithm for Undirected Graphs , 1994, GD.

[13]  Emilio Di Giacomo,et al.  Graph Visualization Techniques for Web Clustering Engines , 2007, IEEE Transactions on Visualization and Computer Graphics.

[14]  Di GiacomoEmilio,et al.  Graph Visualization Techniques for Web Clustering Engines , 2007 .

[15]  Rudi Vernik,et al.  Information Visualisation using Composable Layouts and Visual Sets , 2001, InVis.au.

[16]  Bernice E. Rogowitz,et al.  Perceptual Organization in User-Generated Graph Layouts , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  Saul Greenberg,et al.  Navigating hierarchically clustered networks through fisheye and full-zoom methods , 1996, TCHI.

[18]  Weidong Huang,et al.  Beyond time and error: a cognitive approach to the evaluation of graph drawings , 2008, BELIV '08.

[19]  Weidong Huang,et al.  How people read sociograms: a questionnaire study , 2006, APVIS.

[20]  Tamara Munzner,et al.  GrouseFlocks: Steerable Exploration of Graph Hierarchy Space , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  David Auber,et al.  Tulip - A Huge Graph Visualization Framework , 2004, Graph Drawing Software.