Impact of thin aluminum sheets with aluminum spheres up to 9 km/s

[1]  Andrew J. Piekutowski,et al.  Development of a three-stage, light-gas gun at the University of Dayton Research Institute , 2006 .

[2]  Joel E. Williamsen,et al.  Review of Space Shuttle Meteoroid/Orbital Debris Critical Risk Assessment Practices , 2004 .

[3]  Andrew J. Piekutowski,et al.  Fragmentation-Initiation Threshold for Spheres Impacting at Hypervelocity , 2003 .

[4]  M. J. Matney,et al.  The New NASA Orbital Debris Engineering Model ORDEM2000 , 2002 .

[5]  Andrew J. Piekutowski,et al.  Holes produced in thin aluminum sheets by the hypervelocity impact of aluminum spheres , 1999 .

[6]  William C. Schneider,et al.  Flexible and deployable meteoroid/debris shielding for spacecraft , 1999 .

[7]  Justin H. Kerr,et al.  Projectile shape effects on shielding performance at 7 km/s and 11 km/s , 1997 .

[8]  Andrew J. Piekutowski,et al.  Effects of scale on debris cloud properties , 1997 .

[9]  Donald J. Grosch,et al.  A hypervelocity fragment launcher based on an inhibited shaped charge , 1993 .

[10]  R. Englman,et al.  Material response at hypervelocity impact conditions using laser induced shock waves , 1993 .

[11]  Lalit C. Chhabildas,et al.  An impact technique to accelerate flier plates to velocities over 12 km/s , 1993 .

[12]  A. J. Stilp,et al.  Review of modern hypervelocity impact facilities , 1987 .

[13]  C. L. Murphy,et al.  Review of meteoroid-bumper interaction studies at McGill University , 1969 .

[14]  C. J. Maiden,et al.  An Investigation of the Protection Afforded a Spacecraft by a Thin Shield , 1964 .

[15]  V. Rossow,et al.  Development of a Piston-compressor Type Light-gas Gun for the Launching of Free-flight Models at High Velocity , 1957 .