Nuclear magnetic resonance spectroscopy

Magnetic resonance spectroscopy is a valuable method for the non-invasive investigation of metabolic processes and can now be combined with conventional magnetic resonance imaging in patients. This article gives a brief introduction into the principles and physiological and clinical applications of in vivo proton magnetic resonance spectroscopy, surveys experiences in healthy volunteers and presents exemplary results in patients suffering from cortical blindness or visual field defects. The causes of visual loss include brain trauma, cerebral ischemia, and brain tumors. In traumatic, ischemic and neoplastic lesions, an important spectral finding is an elevated lactate resonance which has been explained by increased anaerobic glycolysis of ischemic brain tissue and macrophages invading necrotic tissue. In our investigations using a clinical spectroscopy protocol on a 1.5 T MR system, a significant lactate signal was absent in spectra obtained from the visual cortex of normal volunteers, even during photic stimulation with a stroboscope. Other spectral changes in the patients include a decreased N-acetyl-aspartate resonance which indicates a decreased number of viable neurons in the examined brain region.

[1]  D. Wade,et al.  Persistent metabolic sequelae of severe head injury in humansin vivo , 2005, Acta Neurochirurgica.

[2]  T K Foo,et al.  Measurement of brain activity with bolus administration of contrast agent and gradient-echo MR imaging. , 1993, Radiology.

[3]  R. Kauppinen,et al.  Brain metabolites as 1H NMR markers of neuronal and glial disorders , 1989, NMR in biomedicine.

[4]  U. Klose,et al.  Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy. , 1991, Radiology.

[5]  E. Gragoudas,et al.  Safety and effectiveness of magnetic resonance imaging of choroidal melanoma patients with episcleral tantalum rings after proton beam irradiation. , 1988, American journal of ophthalmology-glaucoma.

[6]  T. Glonek,et al.  Phosphorus nuclear magnetic resonance and ocular metabolism. , 1985, Survey of ophthalmology.

[7]  J. Frahm,et al.  Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. , 1993, Radiology.

[8]  S. Felber,et al.  Combined Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy of Patients With Acute Stroke , 1992, Stroke.

[9]  P. Joseph,et al.  Ocular MR imaging and spectroscopy: an ex vivo study. , 1986, Radiology.

[10]  G K Radda,et al.  The use of NMR spectroscopy for the understanding of disease. , 1986, Science.

[11]  J A Frank,et al.  Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. , 1992, Radiology.

[12]  G. McCarthy,et al.  Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Felber,et al.  Maple syrup urine disease: Metabolic decompensation monitored by proton magnetic resonance imaging and spectroscopy , 1993, Annals of neurology.

[14]  E Proctor,et al.  Neurometabolic effects of an inborn error of amino acid metabolism demonstrated in vivo by 1H NMR , 1986, Magnetic resonance in medicine.

[15]  G. Fein,et al.  Effect of Photic Stimulation on Human Visual Cortex Lactate and Phosphates Using 1H and 31P Magnetic Resonance Spectroscopy , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  Jens Frahm,et al.  Decrease of glucose in the human visual cortex during photic stimulation , 1992, Magnetic resonance in medicine.

[17]  I. Gottlob,et al.  Effect of levodopa on contrast sensitivity and scotomas in human amblyopia. , 1990, Investigative ophthalmology & visual science.

[18]  M. Safran,et al.  Magnetic resonance imaging versus computed tomography of leukocoric eyes and use of in vitro proton magnetic resonance spectroscopy of retinoblastoma. , 1989, Ophthalmology.

[19]  T. Olsen,et al.  Early Time Course of N‐Acetylaspartate, Creatine and Phosphocreatine, and Compounds Containing Choline in the Brain After Acute Stroke: A Proton Magnetic Resonance Spectroscopy Study , 1992, Stroke.

[20]  B D Ross,et al.  Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. , 1992, Radiology.

[21]  S. Felber,et al.  1-H-Localized magnetic resonance spectroscopy: preliminary observations in transient ischemic attacks , 1992, Journal of the Neurological Sciences.

[22]  J. Frahm,et al.  Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. , 1989, Radiology.

[23]  P. V. van Rijen,et al.  Cerebral lactate detected by regional proton magnetic resonance spectroscopy in a patient with cerebral infarction. , 1988, Stroke.

[24]  P M Matthews,et al.  Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: Assessment of the load of disease , 1990, Magnetic resonance in medicine.

[25]  William H. Oldendorf,et al.  N-Acetyl-L-Aspartic acid: A literature review of a compound prominent in 1H-NMR spectroscopic studies of brain , 1989, Neuroscience & Biobehavioral Reviews.

[26]  B. Miller A review of chemical issues in 1H NMR spectroscopy: N‐acetyl‐l‐aspartate, creatine and choline , 1991, NMR in biomedicine.

[27]  KLAUS-DIETMARMERFSOLDT Jensfrahm Localized Proton Spectroscopy Using Stimulated Echoes , 2004 .

[28]  S. Kosslyn,et al.  Visual Mental Imagery Activates Topographically Organized Visual Cortex: PET Investigations , 1993, Journal of Cognitive Neuroscience.

[29]  S. Felber,et al.  Magnetic Resonance Imaging and Spectroscopy: A Unique Approach to Ischemic Cerebrovascular Disease , 1991 .

[30]  S. Atlas,et al.  Orbital lesions: proton spectroscopic phase-dependent contrast MR imaging. , 1987, Radiology.

[31]  N. Volkow,et al.  Imaging of cerebral blood flow and metabolism in amblyopia by positron emission tomography. , 1988, American journal of ophthalmology.

[32]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[33]  M. Moseley,et al.  MR imaging and spectroscopy in clinical and experimental cerebral ischemia: a review. , 1987, AJR. American journal of roentgenology.

[34]  J. Frahm,et al.  Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites , 1989, Magnetic resonance in medicine.

[35]  S. Felber,et al.  Magnetic resonance imaging features of congenital anophthalmia. , 1993, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[36]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[37]  E. Gragoudas,et al.  Magnetic resonance imaging: An emerging technique for the diagnosis of ocular disorders , 1990, International Ophthalmology.

[38]  S. Felber,et al.  Nuclear Magnetic Resonance Spectroscopy of Low- and High-Grade Human Gliomas , 1992 .

[39]  M. Mintun,et al.  Nonoxidative glucose consumption during focal physiologic neural activity. , 1988, Science.

[40]  H. Bruhn,et al.  Localized high‐resolution proton NMR spectroscopy using stimulated echoes: Initial applications to human brain in vivo , 1989, Magnetic resonance in medicine.

[41]  M. Raichle,et al.  Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. , 1984, Journal of neurophysiology.

[42]  T. Brady,et al.  Study of vitreous liquifaction by NMR spectroscopy and imaging. , 1985, Investigative ophthalmology & visual science.

[43]  R. Shulman,et al.  Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Felber [1H magnetic resonance spectroscopy in intracranial tumors and cerebral ischemia]. , 1993, Der Radiologe.

[45]  J. Frahm,et al.  Monitoring cerebral glucose in diabetics by proton MRS , 1991, The Lancet.

[46]  G. Holmes,et al.  Disturbances of Vision from Cerebral Lesions, with Special Reference to the Cortical Representation of the Macula , 1916, Proceedings of the Royal Society of Medicine.

[47]  A. Ettl,et al.  Orbital involvement in Waldenström's macroglobulinemia: ultrasound, computed tomography and magnetic resonance findings. , 1992, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[48]  P. Joseph,et al.  Choroidal melanomas: correlation of NMR spectroscopy and MR imaging. , 1986, Radiology.

[49]  A. Blamire,et al.  Spectroscopic imaging of stroke in humans , 1992, Neurology.

[50]  E. Gragoudas,et al.  Magnetic resonance imaging and spectroscopy of intraocular tumors. , 1989, Survey of ophthalmology.

[51]  G B Matson,et al.  3D phase encoding 1H spectroscopic imaging of human brain. , 1992, Magnetic resonance imaging.

[52]  S. Felber,et al.  Cortical blindness following cerebral hypoxia: Proton nuclear magnetic resonance imaging and spectroscopy observations , 1994 .

[53]  J. Frahm,et al.  On the identification of cerebral metabolites in localized 1H NMR spectra of human brain In vivo , 1991, NMR in biomedicine.

[54]  J. Frahm,et al.  Cerebral metabolism in man after acute stroke: New observations using localized proton NMR spectroscopy , 1989, Magnetic resonance in medicine.

[55]  J. Alger,et al.  High‐field proton magnetic resonance spectroscopy of human cerebrum obtained during surgery for epilepsy , 1989, Neurology.

[56]  S. Felber,et al.  MR imaging and proton spectroscopy of the brain in posttraumatic cortical blindness , 1993, Journal of magnetic resonance imaging : JMRI.

[57]  P. De Potter,et al.  In vivo phosphorus 31 magnetic resonance spectroscopy of human uveal melanomas and other intraocular tumors. , 1991, American journal of ophthalmology.