PEGylated inorganic nanoparticles.

Application of inorganic nanoparticles in diagnosis and therapy has become a critical component in the targeted treatment of diseases. The surface modification of inorganic oxides is important for providing diversity in size, shape, solubility, long-term stability, and attachment of selective functional groups. This Minireview describes the role of polyethylene glycol (PEG) in the surface modification of oxides and focuses on their biomedical applications. Such a PEGylation of surfaces provides "stealth" characteristics to nanomaterials otherwise identified as foreign materials by human body. The role of PEG as structure-directing agent in synthesis of oxides is also presented.

[1]  Miqin Zhang,et al.  Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. , 2006, Journal of biomedical materials research. Part A.

[2]  Frank Caruso,et al.  Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly† , 2008 .

[3]  Bong Hyun Chung,et al.  Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. , 2009, Toxicology and applied pharmacology.

[4]  Amy Milsted,et al.  Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. , 2005, Journal of the American Chemical Society.

[5]  S. Seal,et al.  Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures—a true template-free self-assembly , 2007, Nanotechnology.

[6]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[7]  N. Xu,et al.  Fabrication of Tunable Core−Shell Structured TiO2 Mesoporous Microspheres Using Linear Polymer Polyethylene Glycol as Templates , 2010 .

[8]  C. Rinaldi,et al.  Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol). , 2009, Journal of colloid and interface science.

[9]  Xintang Huang,et al.  PEG-assisted synthesis of ZnO nanotubes , 2006 .

[10]  Y. Nagasaki,et al.  Preparation of Stable Water-Dispersible PEGylated Gold Nanoparticles Assisted by Nonequilibrium Atmospheric-Pressure Plasma Jets , 2009 .

[11]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[12]  Gerd Ritter,et al.  PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. , 2008, ACS nano.

[13]  Shusheng Zhang,et al.  Ultrasonic-induced synthesis of high surface area colloids CeO2–ZrO2 , 2009 .

[14]  Xuefeng Guo,et al.  Microsphere organization of nanorods directed by PEG linear polymer. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[15]  Sangeeta N. Bhatia,et al.  Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking , 2004 .

[16]  Mauro Comes Franchini,et al.  Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers. , 2009, Chemical communications.

[17]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[18]  Thomas D. Dziubla,et al.  PEGylation of nanocarrier drug delivery systems: State of the art , 2008 .

[19]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[20]  A. Waggoner,et al.  Long-Term Retention of Fluorescent Quantum Dots In Vivo , 2008 .

[21]  Todd Emrick,et al.  PEGylated polymers for medicine: from conjugation to self-assembled systems. , 2010, Chemical communications.

[22]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[23]  Ron C. Hardman A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors , 2005, Environmental health perspectives.

[24]  Oliver T. Bruns,et al.  Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. , 2007, Nano letters.

[25]  Taeghwan Hyeon,et al.  Versatile PEG-derivatized phosphine oxide ligands for water-dispersible metal oxide nanocrystals. , 2007, Chemical communications.

[26]  Jinping Liu,et al.  Selective growth and properties of zinc oxide nanostructures , 2006 .

[27]  R. Rogers,et al.  Metal ion separations in polyethylene glycol-based aqueous biphasic systems: correlation of partitioning behavior with available thermodynamic hydration data. , 1993, Journal of chromatography. B, Biomedical applications.

[28]  Carsten Sönnichsen,et al.  Self-assembly of small gold colloids with functionalized gold nanorods. , 2007, Nano letters.

[29]  Elizabeth L. Bentzen,et al.  Surface modification to reduce nonspecific binding of quantum dots in live cell assays. , 2005, Bioconjugate chemistry.

[30]  William W. Yu,et al.  Quantifying the Influence of Surface Coatings on Quantum Dot Uptake in Cells , 2005 .

[31]  C. Mirkin,et al.  Polyethylene glycol as a novel resist and sacrificial material for generating positive and negative nanostructures. , 2008, Small.

[32]  É. Boisselier,et al.  Encapsulation and stabilization of gold nanoparticles with "click" polyethyleneglycol dendrimers. , 2010, Journal of the American Chemical Society.

[33]  Eugen Katz,et al.  Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen , 2004 .

[34]  Keitaro Yoshimoto,et al.  Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[35]  Jim E Riviere,et al.  Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. , 2007, The Journal of investigative dermatology.

[36]  Jean-Luc Coll,et al.  Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. , 2009, Small.

[37]  Robin D. Rogers,et al.  Polyethylene glycol and solutions of polyethylene glycol as green reaction media , 2005 .

[38]  Harald Fuchs,et al.  Nanomedizin – Herausforderung und Perspektiven , 2009 .

[39]  T. Emrick,et al.  PEGylated silicon nanoparticles: synthesis and characterization. , 2008, Chemical communications.

[40]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[41]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[42]  Martin Malmsten,et al.  Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol) based coatings , 1998 .

[43]  J. Calderon‐Moreno,et al.  Stable silver colloidal dispersions using short chain polyethylene glycol , 2007 .

[44]  R. Narayan,et al.  Nanoceria as antioxidant: Synthesis and biomedical applications , 2008, JOM.

[45]  Xiaohu Gao,et al.  Plasmonic fluorescent quantum dots. , 2009, Nature nanotechnology.

[46]  Dong Liang,et al.  Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. , 2009, Biomaterials.

[47]  Srirang Manohar,et al.  In vitro toxicity studies of polymer-coated gold nanorods , 2010, Nanotechnology.

[48]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. , 2008, Advanced drug delivery reviews.

[49]  Jin-Sil Choi,et al.  In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. , 2005, Journal of the American Chemical Society.

[50]  William W. Yu,et al.  Quantitative determination of skin penetration of PEG-coated CdSe quantum dots in dermabraded but not intact SKH-1 hairless mouse skin. , 2009, Toxicological sciences : an official journal of the Society of Toxicology.

[51]  Rakesh K Jain,et al.  Molecular regulation of vessel maturation , 2003, Nature Medicine.

[52]  S. Seal,et al.  Colloidal stability by surface modification , 2005 .

[53]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[54]  Nigel J Walker,et al.  Migration of intradermally injected quantum dots to sentinel organs in mice. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[55]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[56]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[57]  Zhong Shen,et al.  Synthesis of PPEGMEA-g-PMAA densely grafted double hydrophilic copolymer and its use as a template for the preparation of size-controlled superparamagnetic Fe3O4/polymer nano-composites , 2008 .

[58]  Y. Xiong,et al.  Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. , 2003, Inorganic chemistry.

[59]  Mingyuan Gao,et al.  One‐Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles , 2005 .

[60]  Kajsa Uvdal,et al.  Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[61]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[62]  S. B. Tiwari,et al.  Long-Circulating Polymeric Nanovectors for Tumor-Selective Gene Delivery , 2005, Technology in cancer research & treatment.

[63]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[64]  Robin D. Rogers,et al.  Solvent Property Characterization of Poly(ethylene glycol)/Dextran Aqueous Biphasic Systems Using the Free Energy of Transfer of a Methylene Group and a Linear Solvation Energy Relationship , 2005 .

[65]  Eun-Kyung Lim,et al.  Synthesis of water soluble PEGylated magnetic complexes using mPEG-fatty acid for biomedical applications. , 2008, Colloids and surfaces. B, Biointerfaces.

[66]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[67]  H. Merkle,et al.  PEGylation as a tool for the biomedical engineering of surface modified microparticles. , 2008, Journal of pharmaceutical sciences.

[68]  M. Prato,et al.  Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. , 2005, Angewandte Chemie.

[69]  C. Mirkin,et al.  Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. , 2007, Nano letters.

[70]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[71]  K. Kakegawa,et al.  Homogeneous precipitation of Cr3+–M2+ (M = Ni, Zn, Co, Cu) oxalate by oxidation of the polyethylene glycol–cation complex , 2000 .

[72]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[73]  Michael Wagener,et al.  An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. , 2004, Biomaterials.

[74]  N. Monteiro-Riviere,et al.  Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. , 2007, Nano letters.

[75]  Kazunori Kataoka,et al.  Preparation of functionally Pegylated gold nanoparticles with narrow distribution through autoreduction of auric cation by alpha-biotinyl-PEG-block-[poly(2- (N,N-dimethylamino)ethyl methacrylate)]. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[76]  Amit Kumar,et al.  PEGylated nanoceria as radical scavenger with tunable redox chemistry. , 2009, Journal of the American Chemical Society.

[77]  Weijun Yu,et al.  Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. , 2007, Inorganic chemistry.

[78]  P. Perriat,et al.  Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[79]  Michihiro Nakamura,et al.  Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles , 2007, International journal of cancer.

[80]  Robert Sinclair,et al.  Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. , 2008, Small.

[81]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[82]  Chad A. Mirkin,et al.  Goldnanopartikel in Biologie und Medizin , 2010 .

[83]  Do Kyung Kim,et al.  Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. , 2006, Journal of the American Chemical Society.

[84]  Oliver T. Bruns,et al.  A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. , 2009, Nano letters.

[85]  Jayanth Panyam,et al.  Biodegradable nanoparticles for drug and gene delivery to cells and tissue. , 2003, Advanced drug delivery reviews.

[86]  Mauro Ferrari,et al.  Nanomedicine--challenge and perspectives. , 2009, Angewandte Chemie.

[87]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[88]  Lajos P. Balogh,et al.  Dendrimer−Silver Complexes and Nanocomposites as Antimicrobial Agents , 2001 .

[89]  A. Joly,et al.  The Effects of Aging on the Luminescence of PEG-Coated Water-Soluble ZnO Nanoparticle Solutions , 2008 .

[90]  Sudipta Seal,et al.  One dimensional nanostructured materials , 2007 .

[91]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[92]  K. Tsuchida,et al.  Recent advances in inorganic nanoparticle-based drug delivery systems. , 2008, Mini reviews in medicinal chemistry.

[93]  Kazunori Kataoka,et al.  PEGylated Nanoparticles for Biological and Pharmaceutical Applications , 2003 .

[94]  Ming-Hsien Tsai,et al.  Persistent Tissue Kinetics and Redistribution of Nanoparticles, Quantum Dot 705, in Mice: ICP-MS Quantitative Assessment , 2007, Environmental health perspectives.

[95]  Sanjiv S Gambhir,et al.  microPET-Based Biodistribution of Quantum Dots in Living Mice , 2007, Journal of Nuclear Medicine.

[96]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[97]  J. Kjems,et al.  Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors. , 2009, ACS nano.

[98]  K. Kono,et al.  Effect of pH and generation of dendron on single‐step synthesis of gold nanoparticles using PEGylated polyamidoamine dendron in aqueous medium , 2010 .

[99]  Z. Lenkei,et al.  Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. , 2010, Journal of the American Chemical Society.

[100]  Rebekah Drezek,et al.  Evaluation of quantum dot cytotoxicity based on intracellular uptake. , 2006, Small.

[101]  Polyethylene glycol-assisted hydrothermal growth of magnetite nanowires : Synthesis and magnetic properties , 2008 .

[102]  A Paul Alivisatos,et al.  Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. , 2006, Nano letters.

[103]  Ick Chan Kwon,et al.  Polymeric nanomedicine for cancer therapy , 2008 .

[104]  Jinkyu Lee,et al.  Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. , 2005, Angewandte Chemie.

[105]  C. Niemeyer,et al.  Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften , 2001 .

[106]  M. Prato,et al.  Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. , 2006, Biochimica et biophysica acta.

[107]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[108]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[109]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[110]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[111]  R. Rogers,et al.  The effects of choice of anion (X=C1−, SCN−, NO3−) and polyethylene glycol (PEG) chain length on the local and supramolecular structures of LnX3/PEG complexes , 1997 .

[112]  Kostas Kostarelos,et al.  Blood circulation and tissue biodistribution of lipid--quantum dot (L-QD) hybrid vesicles intravenously administered in mice. , 2009, Bioconjugate chemistry.

[113]  Fr. Balas,et al.  Mesoporöse Materialien für den Wirkstofftransport , 2007 .

[114]  Peter Wipf,et al.  Nanoparticles in cellular drug delivery. , 2009, Bioorganic & medicinal chemistry.

[115]  Michael Hsiao,et al.  Enhancement of cell radiation sensitivity by pegylated gold nanoparticles , 2010, Physics in medicine and biology.

[116]  K. Shakesheff,et al.  Polymeric systems for controlled drug release. , 1999, Chemical reviews.

[117]  Aibing Yu,et al.  Inorganic nanoparticles as carriers for efficient cellular delivery , 2006 .

[118]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[119]  Priyabrata Mukherjee,et al.  Biological properties of "naked" metal nanoparticles. , 2008, Advanced drug delivery reviews.

[120]  Y. Qian,et al.  Large-scale synthesis of antimony nanobelt bundles , 2004 .

[121]  Chad A Mirkin,et al.  Gold nanoparticles for biology and medicine. , 2010, Angewandte Chemie.

[122]  F. Schüth,et al.  Magnetische Nanopartikel: Synthese, Stabilisierung, Funktionalisierung und Anwendung , 2007 .

[123]  Marcus Textor,et al.  Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. , 2009, Small.

[124]  Kinam Park,et al.  Environment-sensitive hydrogels for drug delivery , 2001 .

[125]  Charles DiMarzio,et al.  Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery , 2006, International journal of nanomedicine.

[126]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[127]  Stephanie E. A. Gratton,et al.  Imparting size, shape, and composition control of materials for nanomedicine. , 2006, Chemical Society reviews.

[128]  J. Santamaría,et al.  Synthesis and stealthing study of bare and PEGylated silica micro- and nanoparticles as potential drug-delivery vectors , 2008 .

[129]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[130]  Robin D. Rogers,et al.  Solvent Properties of Aqueous Biphasic Systems Composed of Polyethylene Glycol and Salt Characterized by the Free Energy of Transfer of a Methylene Group between the Phases and by a Linear Solvation Energy Relationship , 2002 .

[131]  Kazunori Kataoka,et al.  Quantitative and Reversible Lectin-Induced Association of Gold Nanoparticles Modified with α-Lactosyl-ω-mercapto-poly(ethylene glycol) , 2001 .

[132]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[133]  Nathan Kohler,et al.  A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. , 2004, Journal of the American Chemical Society.