In-plane tunnelling field-effect transistor integrated on Silicon

Silicon has persevered as the primary substrate of microelectronics during last decades. During last years, it has been gradually embracing the integration of ferroelectricity and ferromagnetism. The successful incorporation of these two functionalities to silicon has delivered the desired non-volatility via charge-effects and giant magneto-resistance. On the other hand, there has been a numerous demonstrations of the so-called magnetoelectric effect (coupling between ferroelectric and ferromagnetic order) using nearly-perfect heterostructures. However, the scrutiny of the ingredients that lead to magnetoelectric coupling, namely magnetic moment and a conducting channel, does not necessarily require structural perfection. In this work, we circumvent the stringent requirements for epilayers while preserving the magnetoelectric functionality in a silicon-integrated device. Additionally, we have identified an in-plane tunnelling mechanism which responds to a vertical electric field. This genuine electroresistance effect is distinct from known resistive-switching or tunnel electro resistance.

[1]  C. Vaz,et al.  Magnetoelectric Effects in Complex Oxides with Competing Ground States , 2009 .

[2]  H. Sirringhaus,et al.  Low-voltage control of ferromagnetism in a semiconductor p–n junction , 2008, 0807.0906.

[3]  H. Schmidt,et al.  Tunneling-like magnetoresistance in bicrystal La0.8Sr0.2MnO3−δ thin films , 1998 .

[4]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[5]  A. Rushforth,et al.  Toward a low-voltage multiferroic transistor: Magnetic (Ga,Mn)As under ferroelectric control , 2009 .

[6]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[7]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[8]  X. Lu,et al.  Nucleation-induced self-assembly of multiferroic BiFeO3-CoFe2O4 nanocomposites. , 2013, Nano letters.

[9]  C. Ahn,et al.  Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O{3}/La{0.8}Sr{0.2}MnO{3} Multiferroic heterostructures. , 2010, Physical review letters.

[10]  X. Hong,et al.  Effect of electric field doping on the anisotropic magnetoresistance in doped manganites , 2006 .

[11]  Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. , 2008, Nature materials.

[12]  Y. Hao,et al.  Field dependency of magnetoelectric coupling in multilayered nanocomposite arrays: Possible contribution from surface spins , 2012 .

[13]  M. Alexe,et al.  Tailoring the interfacial magnetic anisotropy in multiferroic field-effect devices , 2014 .

[14]  X. Lu,et al.  Magnetoelectric coupling in ordered arrays of multilayered heteroepitaxial BaTiO₃/CoFe₂O₄ nanodots. , 2011, Nano letters.

[15]  P. Balk,et al.  Dielectrics for Field Effect Technology , 1995 .

[16]  I. Fina,et al.  The direct magnetoelectric effect in ferroelectric-ferromagnetic epitaxial heterostructures. , 2013, Nanoscale.

[17]  A. Raychaudhuri,et al.  Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film , 2014 .

[18]  J. Mitchell,et al.  Observation of magnetoelectric effect in epitaxial ferroelectric film/manganite crystal heterostructures , 2006 .

[19]  A. Rushforth,et al.  Enhanced Curie temperature and nonvolatile switching of ferromagnetism in ultrathin (Ga,Mn)As channels , 2011 .

[20]  T. Zhao,et al.  Colossal magnetoresistive manganite-based ferroelectric field-effect transistor on Si , 2004 .

[21]  S. Wu Memory retention and switching behavior of metal-ferroelectric-semiconductor transistors , 1976 .

[22]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[23]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[24]  H. Ohno,et al.  Electric-field control of ferromagnetism in (Ga,Mn)As , 2006 .

[25]  I. Fina,et al.  Ultra-flat BaTiO3 epitaxial films on Si(001) with large out-of-plane polarization , 2013 .

[26]  Gong,et al.  Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. , 1996, Physical review. B, Condensed matter.

[27]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[28]  W. Arden The International Technology Roadmap for Semiconductors—Perspectives and challenges for the next 15 years , 2002 .

[29]  C. Ahn,et al.  Electric field effect in correlated oxide systems , 2003, Nature.

[30]  Kido,et al.  Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. , 1995, Physical review. B, Condensed matter.

[31]  S. Uhlenbruck,et al.  Physics of grain boundaries in the colossal magnetoresistance manganites , 2000 .

[32]  C. Nan,et al.  Electric-field-induced magnetization in Pb(Zr,Ti)O3/Terfenol-D composite structures , 2006 .