Predicting seagrass decline due to cumulative stressors

[1]  David P. Hamilton,et al.  Are laboratory growth rate experiments relevant to explaining bloom-forming cyanobacteria distributions at global scale? , 2020, Harmful algae.

[2]  Eve McDonald-Madden,et al.  Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. , 2020, Ecology letters.

[3]  R. Connolly,et al.  Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts , 2020 .

[4]  Matthew P. Adams,et al.  Towards Ecologically Relevant Targets: Impact of flow and sediment discharge on seagrass communities in the Great Barrier Reef , 2019, El Sawah, S. (ed.) MODSIM2019, 23rd International Congress on Modelling and Simulation..

[5]  J. Ruíz,et al.  Recent trend reversal for declining European seagrass meadows , 2019, Nature Communications.

[6]  Eve McDonald-Madden,et al.  Dealing with high uncertainty in qualitative network models using Boolean analysis , 2019, Methods in Ecology and Evolution.

[7]  Susanne von Caemmerer,et al.  Quantifying impacts of enhancing photosynthesis on crop yield , 2019, Nature Plants.

[8]  J. Romero,et al.  Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass. , 2019, Marine environmental research.

[9]  Jessie C. Jarvis,et al.  Global challenges for seagrass conservation , 2018, Ambio.

[10]  M. Turner,et al.  Physical drivers of seagrass spatial configuration: the role of thresholds , 2018, Landscape Ecology.

[11]  J. Creed,et al.  The biomass–density relationship in seagrasses and its use as an ecological indicator , 2018, BMC Ecology.

[12]  M. Pedersen,et al.  Additive response to multiple environmental stressors in the seagrass Zostera marina L. , 2018 .

[13]  P. Macreadie,et al.  Highly Disturbed Populations of Seagrass Show Increased Resilience but Lower Genotypic Diversity , 2018, Front. Plant Sci..

[14]  Matthew P. Adams,et al.  Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses. , 2018, The New phytologist.

[15]  S. Dupont,et al.  Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review , 2018, Global change biology.

[16]  Mevin B Hooten,et al.  Iterative near-term ecological forecasting: Needs, opportunities, and challenges , 2018, Proceedings of the National Academy of Sciences.

[17]  R. Kohn,et al.  Gaussian variational approximation for high-dimensional state space models , 2018, 1801.07873.

[18]  Kevin Burrage,et al.  Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology , 2017, Science Advances.

[19]  Matthew P. Adams,et al.  Seagrass Resistance to Light Deprivation: Implications for Resilience , 2018 .

[20]  Kerrie Mengersen,et al.  Managing seagrass resilience under cumulative dredging affecting light: Predicting risk using dynamic Bayesian networks , 2018 .

[21]  Donald L. DeAngelis,et al.  The practice of prediction: What can ecologists learn from applied, ecology-related fields? , 2017 .

[22]  Matthew P. Adams,et al.  Fragment dispersal and plant-induced dieback explain irregular ring-shaped pattern formation in a clonal submerged macrophyte , 2017 .

[23]  K. Mengersen,et al.  Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience , 2017, Nature Communications.

[24]  K. O’Brien,et al.  Variation within and between cyanobacterial species and strains affects competition: Implications for phytoplankton modelling. , 2017, Harmful algae.

[25]  K. O’Brien,et al.  Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species , 2017, Front. Plant Sci..

[26]  James T. Thorson,et al.  Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo , 2017 .

[27]  Matthew P. Adams,et al.  Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species , 2017, Scientific Reports.

[28]  H. Kayanne Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific , 2017, Coral Reefs.

[29]  M. Flindt,et al.  Modelling stressors on the eelgrass recovery process in two Danish estuaries , 2016 .

[30]  Matthew P. Adams,et al.  Thresholds for morphological response to light reduction for four tropical seagrass species , 2016 .

[31]  Ole Pedersen,et al.  Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration. , 2016, The New phytologist.

[32]  Matthew P. Adams,et al.  A biophysical representation of seagrass growth for application in a complex shallow-water biogeochemical model , 2016 .

[33]  N. Marbà,et al.  Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis , 2016 .

[34]  P. Ralph,et al.  Light Thresholds to Prevent Dredging Impacts on the Great Barrier Reef Seagrass, Zostera muelleri ssp. capricorni , 2016, Front. Mar. Sci..

[35]  James Udy,et al.  Unravelling complexity in seagrass systems for management: Australia as a microcosm. , 2015, The Science of the total environment.

[36]  Michelle Waycott,et al.  A framework for the resilience of seagrass ecosystems. , 2015, Marine pollution bulletin.

[37]  K. O’Brien,et al.  What lies beneath: Why knowledge of belowground biomass dynamics is crucial to effective seagrass management , 2015 .

[38]  Michele Gristina,et al.  Seagrass meadows (Posidonia oceanica) distribution and trajectories of change , 2015, Scientific Reports.

[39]  David Rissik,et al.  Identifying habitats at risk: simple models can reveal complex ecosystem dynamics. , 2015, Ecological applications : a publication of the Ecological Society of America.

[40]  Owen L. Petchey,et al.  The ecological forecast horizon, and examples of its uses and determinants , 2015, bioRxiv.

[41]  K. O’Brien,et al.  Assessment of light history indicators for predicting seagrass biomass , 2015 .

[42]  Barbara J. Robson,et al.  When do aquatic systems models provide useful predictions, what is changing, and what is next? , 2014, Environ. Model. Softw..

[43]  J. Huisman,et al.  Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. , 2014, Ecology letters.

[44]  M Waycott,et al.  Temperature extremes reduce seagrass growth and induce mortality. , 2014, Marine pollution bulletin.

[45]  Miguel Lázaro-Gredilla,et al.  Doubly Stochastic Variational Bayes for non-Conjugate Inference , 2014, ICML.

[46]  H. Possingham,et al.  Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping , 2014 .

[47]  A. Olds,et al.  Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding , 2014 .

[48]  N. Anten,et al.  Physiological mechanisms in plant growth models: do we need a supra-cellular systems biology approach? , 2013, Plant, cell & environment.

[49]  P. Lavery,et al.  Identifying robust bioindicators of light stress in seagrasses: A meta-analysis , 2013 .

[50]  I. Sokolova Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. , 2013, Integrative and comparative biology.

[51]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[52]  Scott A. Sisson,et al.  Efficient hydrological model parameter optimization with Sequential Monte Carlo sampling , 2012, Environ. Model. Softw..

[53]  N. Marbà,et al.  Mediterranean seagrass vulnerable to regional climate warming , 2012 .

[54]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[55]  J. Kaldy Influence of light, temperature and salinity on dissolved organic carbon exudation rates in Zostera marina L. , 2012, Aquatic biosystems.

[56]  Scott R. Marion,et al.  Recovery trajectories during state change from bare sediment to eelgrass dominance , 2012 .

[57]  J. Borum,et al.  Seasonal acclimation in metabolism reduces light requirements of eelgrass (Zostera marina) , 2011 .

[58]  Helene Marsh,et al.  A broad-scale assessment of the risk to coastal seagrasses from cumulative threats , 2011 .

[59]  F. Badalamenti,et al.  The impact of dredge-fill on Posidonia oceanica seagrass meadows: regression and patterns of recovery. , 2011, Marine pollution bulletin.

[60]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.

[61]  Kathryn McMahon,et al.  Recovery from the impact of light reduction on the seagrass Amphibolis griffithii, insights for dredging management. , 2011, Marine pollution bulletin.

[62]  H. Possingham,et al.  Monitoring does not always count. , 2010, Trends in ecology & evolution.

[63]  Frederick T. Short,et al.  Accelerating loss of seagrasses across the globe threatens coastal ecosystems , 2009, Proceedings of the National Academy of Sciences.

[64]  Carlos M. Duarte,et al.  Associations of concern: Declining seagrasses and threatened dependent species , 2009 .

[65]  K. Anthony,et al.  Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching , 2009 .

[66]  Benjamin S Halpern,et al.  Interactive and cumulative effects of multiple human stressors in marine systems. , 2008, Ecology letters.

[67]  Mark A. Girolami,et al.  Bayesian inference for differential equations , 2008, Theor. Comput. Sci..

[68]  Carrie V. Kappel,et al.  A Global Map of Human Impact on Marine Ecosystems , 2008, Science.

[69]  S. Park,et al.  Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review , 2007 .

[70]  Roy R. Lewis,et al.  Environmental impacts of dredging on seagrasses: a review. , 2006, Marine pollution bulletin.

[71]  G. Kendrick,et al.  Decline and Recovery of Seagrass Ecosystems— The Dynamics of Change , 2006 .

[72]  P. Sanchez‐Jerez,et al.  Recovery of deep Posidonia oceanica meadows degraded by trawling , 2005 .

[73]  Michelle Waycott,et al.  Seagrass population dynamics and water quality in the Great Barrier Reef region: a review and future research directions. , 2005, Marine pollution bulletin.

[74]  Aaron M. Ellison,et al.  Bayesian inference in ecology , 2004 .

[75]  E. Koch Beyond light: Physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements , 2001 .

[76]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[77]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[78]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[79]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[80]  A. Strong,et al.  APPLYING MCSST TO CORAL REEF BLEACHING , 1995 .

[81]  M. C. Jones,et al.  Simple boundary correction for kernel density estimation , 1993 .

[82]  C. Duarte Seagrass depth limits , 1991 .

[83]  Trevor Platt,et al.  Mathematical formulation of the relationship between photosynthesis and light for phytoplankton , 1976 .

[84]  N. Metropolis,et al.  The Monte Carlo method. , 1949, Journal of the American Statistical Association.