VBARMS: A variable block algebraic recursive multilevel solver for sparse linear systems

Sparse matrices arising from the solution of systems of partial differential equations often exhibit a perfect block structure, meaning that the nonzero blocks in the sparsity pattern are fully dense (and typically small), e.g., when several unknown quantities are associated with the same grid point. Similar block orderings can be sometimes unravelled also on general unstructured matrices, by ordering consecutively rows and columns with a similar sparsity pattern, and treating some zero entries of the reordered matrix as nonzero elements, with a little sacrifice of memory. We show how we can take advantage of these frequently occurring structures in the design of the multilevel incomplete LU factorization preconditioner ARMS (Saad and Suchomel, 2002 [14]) and maximize computational efficiency.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[3]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[4]  Daniel B. Szyld,et al.  A Block Ordering Method for Sparse Matrices , 1990, SIAM J. Sci. Comput..

[5]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[6]  Vipin Kumar,et al.  Introduction to Parallel Computing , 1994 .

[7]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[8]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[9]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[10]  Michael M. Resch,et al.  Tools for High Performance Computing - Proceedings of the 2nd International Workshop on Parallel Tools for High Performance Computing, July 2008, HLRS, Stuttgart , 2008, Parallel Tools Workshop.

[11]  Michael R. Leuze,et al.  Independent set orderings for parallel matrix factorization by Gaussian elimination , 1989, Parallel Comput..

[12]  Yousef Saad,et al.  Finding Exact and Approximate Block Structures for ILU Preconditioning , 2002, SIAM J. Sci. Comput..

[13]  James Demmel,et al.  Block LU factorization , 1992 .

[14]  Masha Sosonkina,et al.  Distributed Schur Complement Techniques for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[15]  Fred Wubs,et al.  Nested grids ILU-decomposition (NGILU) , 1996 .

[16]  Mardochée Magolu monga Made,et al.  Experimental comparison of three-dimensional point and line modified incomplete factorizations , 2004, Numerical Algorithms.

[17]  Cleve Ashcraft,et al.  Compressed Graphs and the Minimum Degree Algorithm , 1995, SIAM J. Sci. Comput..

[18]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[19]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[20]  Robert Beauwens,et al.  Preconditioning of discrete Helmholtz operators perturbed by a diagonal complex matrix , 2000 .

[21]  Yousef Saad,et al.  Multilevel ILU With Reorderings for Diagonal Dominance , 2005, SIAM J. Sci. Comput..

[22]  Jun Zhang,et al.  BILUTM: A Domain-Based Multilevel Block ILUT Preconditioner for General Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[23]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[24]  O. Axelsson A generalized SSOR method , 1972 .

[25]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[26]  I. S. Du,et al.  Combining direct and iterative methods for the solution of large systems in dierent application areas , 2007 .

[27]  Masha Sosonkina,et al.  A parallel multilevel incomplete LU factorization preconditioner that exploits block matrix structures , 2014 .

[28]  Yousef Saad,et al.  High-order ILU preconditioners for CFD problems , 2000 .

[29]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[30]  曹志浩,et al.  ON ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS , 1993 .

[31]  Herb Sutter,et al.  The Free Lunch Is Over A Fundamental Turn Toward Concurrency in Software , 2013 .

[32]  Daniel B. Szyld,et al.  An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms , 2001, SIAM J. Numer. Anal..

[33]  Wei Wang,et al.  POSIX threads programming , 2005 .

[34]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[35]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[36]  Xiaoye S. Li,et al.  An overview of SuperLU: Algorithms, implementation, and user interface , 2003, TOMS.

[37]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[38]  Iain S. Duff,et al.  Combining direct and iterative methods for the solution of large systems in different application areas , 2004 .

[39]  Yousef Saad,et al.  Multilevel Preconditioners Constructed From Inverse-Based ILUs , 2005, SIAM J. Sci. Comput..

[40]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[41]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[42]  Hans-Joachim Bungartz,et al.  Parallel Computing: Accelerating Computational Science and Engineering (CSE), Proceedings of the International Conference on Parallel Computing, ParCo 2013, 10-13 September 2013, Garching (near Munich), Germany , 2014, PARCO.

[43]  Mark Embree,et al.  The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..

[44]  Edmond Chow,et al.  A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[45]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[46]  Hamilton-Jacobi Equations,et al.  Multigrid Methods for , 2011 .

[47]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[48]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[49]  Michael M. Resch,et al.  Tools for High Performance Computing 2009 , 2010 .

[50]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[51]  J. G. G. Vorst,et al.  Parallel Sparse LU Decomposition on a Mesh Network of Transputers , 1993, SIAM J. Matrix Anal. Appl..

[52]  Anshul Gupta,et al.  Adaptive Techniques for Improving the Performance of Incomplete Factorization Preconditioning , 2010, SIAM J. Sci. Comput..

[53]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[54]  Masha Sosonkina,et al.  Variable Block Algebraic Recursive Multilevel Solver (VBARMS) for Sparse Linear Systems , 2013, PARCO.

[55]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[56]  Aldo Bonfiglioli,et al.  Fluctuation Splitting Schemes for the Compressible and Incompressible Euler and Navier-Stokes Equations , 2000 .

[57]  Edmond Chow,et al.  Approximate Inverse Techniques for Block-Partitioned Matrices , 1997, SIAM J. Sci. Comput..

[58]  G. Meurant Computer Solution of Large Linear Systems , 1999 .

[59]  G. Golub,et al.  Block Preconditioning for the Conjugate Gradient Method , 1985 .

[60]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[61]  R. Varga,et al.  Incomplete Factorizations of Matrices and Connections with H-Matrices , 1980 .

[62]  Masha Sosonkina,et al.  Variable Block Multilevel Iterative Solution of General Sparse Linear Systems , 2013, PPAM.

[63]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[64]  K. St A review of algebraic multigrid , 2001 .

[65]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[66]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[67]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[68]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[69]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[70]  Matthias Bollhöfer,et al.  A Robust and Efficient ILU that Incorporates the Growth of the Inverse Triangular Factors , 2003, SIAM J. Sci. Comput..

[71]  R. Kouhia,et al.  Stabilized and block approximate inverse preconditioners for problems in solid and structural mechanics , 2001 .

[72]  Murat Manguoglu A domain-decomposing parallel sparse linear system solver , 2011, J. Comput. Appl. Math..

[73]  Ilse C. F. Ipsen,et al.  THE IDEA BEHIND KRYLOV METHODS , 1998 .

[74]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[75]  Karl Meerbergen,et al.  IMF: An Incomplete Multifrontal LU-Factorization for Element-Structured Sparse Linear Systems , 2013, SIAM J. Sci. Comput..

[76]  Yousef Saad,et al.  Variations on algebraic recursive multilevel solvers (ARMS) for the solution of CFD problems , 2004 .

[77]  David W. Zingg,et al.  Three-Dimensional Aerodynamic Computations on Unstructured Grids Using a Newton-Krylov Approach , 2005 .

[78]  Yousef Saad,et al.  ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..

[79]  Jun Zhang,et al.  BILUM: Block Versions of Multielimination and Multilevel ILU Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[80]  R.M.M. Mattheij Stability of Block $LU$-Decompositions of Matrices Arising from BVP , 1984 .

[81]  Christian Wagner,et al.  Multilevel ILU decomposition , 1999, Numerische Mathematik.