Point-to-Line Mappings and Hough Transforms

Nearly 40 years ago Hough showed how a point-to-line mapping that takes collinear points into concurrent lines can be used to detect collinear sets of points, since such points give rise to peaks where the corresponding lines intersect. Over the past 30 years many variations and generalizations of Hough's idea have been proposed, Hough's mapping was linear, but most or all of the mappings studied since then have been nonlinear, and take collinear points into concurrent curves rather than concurrent lines; little or no work has appeared in the pattern recognition literature on mappings that take points into lines.This paper deals with point-to-line mappings in the real projective plane. (We work in the projective plane to avoid the need to deal with special cases in which collinear points are mapped into parallel, rather than concurrent, lines.) We review basic properties of linear point-to-point mappings (collineations) and point-to-line mappings (correlations), and show that any one-to-one point-to-line mapping that takes collinear points into concurrent lines must in fact be linear. We describe ways in which the matrices of such mappings can be put into canonical form, and show that Hough's mapping is only one of a large class of inequivalent mappings. We show that any one-to-one point-to-line mapping that has an incidence-symmetry property must be linear and must have a symmetric matrix which has a diagonal canonical form. We establish useful geometric properties of such mappings, especially in cases where their matrices define nonempty conics.

[1]  Joseph L. Mundy,et al.  Projective geometry for machine vision , 1992 .

[2]  P. Dembowski Finite geometries , 1997 .

[3]  I. Herstein,et al.  Topics in algebra , 1964 .

[4]  W. C. Graustein,et al.  Introduction to higher geometry , 1933 .

[5]  F. E. Collis,et al.  Geometric Invariance in Computer Vision edited by Joseph L. Mundy and Andrew Zisserman, The MIT Press, Cambridge, Massachusetts, 540 pages, incl. index (£44.95) , 1993, Robotica.

[6]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[7]  V. F. Leavers,et al.  Which Hough transform , 1993 .

[8]  Lynn Batten Combinatorics of Finite Geometries , 1986 .

[9]  P. B. Bhattacharya,et al.  Basic Abstract Algebra , 1986 .

[10]  C. E. Springer,et al.  Geometry and Analysis of Projective Spaces , 1967 .

[11]  Emanuel Sperner,et al.  Introduction to modern algebra and matrix theory , 1951 .

[12]  D. Pedoe,et al.  Geometry, a comprehensive course , 1988 .

[13]  Larry H. Thiel,et al.  Algorithms for Detecting M-Dimensional Objects in N-Dimensional Spaces , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  R. S. Wallace,et al.  A modified Hough transform for lines , 1985, CVPR 1985.

[15]  W. J. Hodgetts,et al.  An Introduction to Plane Projective Geometry , 1954 .

[16]  P. D. Picton,et al.  Hough Transform References , 1987, Int. J. Pattern Recognit. Artif. Intell..

[17]  Edward Roy Davies Image space transforms for detecting straight edges in industrial images , 1986, Pattern Recognit. Lett..

[18]  Patrick Gros,et al.  Geometric interpretation of joint conic invariants , 1992 .

[19]  H. F. Baker Principles of Geometry , 1934 .

[20]  H. Coxeter Non-Euclidean geometry , 1961 .

[21]  E. Artin,et al.  Geometric Algebra: Artin/Geometric , 1988 .

[22]  A. Heyting Axiomatic Projective Geometry , 1963 .

[23]  S. Maybank The projective geometry of ambiguous surfaces , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[24]  Joseph Verdina,et al.  Projective geometry and point transformations , 1971 .

[25]  Azriel Rosenfeld,et al.  A convex polygon is determined by its Hough transform , 1995, Pattern Recognit. Lett..

[26]  Peyman Milanfar On the hough transform of a polygon , 1996, Pattern Recognit. Lett..

[27]  Howard Whitley Eves,et al.  Elementary Matrix Theory , 1980 .

[28]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[29]  H. W. Turnbull,et al.  An Introduction to the Theory of Canonical Matrices , 1932, Nature.

[30]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[31]  L. Mirsky,et al.  Introduction to Linear Algebra , 1965, The Mathematical Gazette.

[32]  W. V. Hodge,et al.  Methods of algebraic geometry , 1947 .

[33]  M. Nixon,et al.  On the intimate relationship between the principle of duality and the Hough transform , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  R. A. Rosenbaum Introduction to Projective Geometry and Modern Algebra , 1963 .

[35]  John W. Blattner Projective plane geometry , 1968 .

[36]  H. Coxeter,et al.  The Real Projective Plane , 1992 .

[37]  Olivier Faugeras,et al.  Three-Dimensional Computer Vision , 1993 .

[38]  Lynn Margaret Batten,et al.  The theory of finite linear spaces - combinatorics of points and lines , 1993 .

[39]  David Gans,et al.  Transformations and geometries , 1969 .

[40]  Lynn Batten,et al.  The Theory of Finite Linear Spaces: Notation index , 1993 .

[41]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[42]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[43]  Kenichi Kanatani,et al.  Computational projective geometry , 1991, CVGIP Image Underst..

[44]  Azriel Rosenfeld,et al.  Hough-transform detection of lines in 3-D space , 2000, Pattern Recognit. Lett..

[45]  J. W. Archbold,et al.  Projective geometry, of n dimensions , 1962 .

[46]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .

[47]  H. Guggenheimer,et al.  Projective and related geometries , 1966 .

[48]  Yolande Belaïd,et al.  Planes and Quadrics Detection Using Hough Transform , 1984 .

[49]  Hanfried Lenz,et al.  Design theory , 1985 .

[50]  Robert J. Bumcrot,et al.  Modern Projective Geometry , 1969 .

[51]  E. A. Maxwell Book Reviews: The Methods of Plane Projective Geometry Based on the Use of General Homogeneous Coordinates , 1946 .

[52]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[53]  A. Adrian Albert,et al.  An Introduction to Finite Projective Planes , 1970 .

[54]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[55]  Arthur V. Forman A Modified Hough Transform For Detecting Lines In Digital Imagery , 1986, Other Conferences.

[56]  Edward T. Dugan,et al.  On the uniqueness of the representation of a convex polygon by its Hough transform , 1996, Pattern Recognit. Lett..

[57]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[58]  Lynn Batten,et al.  The Theory of Finite Linear Spaces by Lynn Margaret Batten , 1993 .

[59]  Oswald Giering Vorlesungen über höhere Geometrie , 1982 .

[60]  Jean Frenkel Géométrie pour l'élève-professeur , 1973 .

[61]  Paul Kelly,et al.  Projective Geometry And Projective Metrics , 1953 .