Trends in long-wavelength single-mode transmission systems and demonstrations in japan

Long-wavelength single-mode optical fiber transmission technology has recently made rapid progress and is now moving into the commercial operation stage. This paper describes the present state of this technology focusing on the research and development work in the Electrical Communication Laboratories. Based on the results of experiments on optical devices and on preliminary system feasibility analysis, it is shown that, at the present time, an optical wavelength in the 1.3 μm band is desirable for large capacity transmission from the viewpoint of attainable repeater spacings. A field trial plan of a 400 Mbit/s optical transmission system for a long-haul trunk which can compete economically with existing digital transmission systems is outlined.

[1]  S. Shimada,et al.  Systems engineering for long-haul optical-fiber transmission , 1980, Proceedings of the IEEE.

[2]  Shinji Tsuji,et al.  Fabrication and characterization of narrow stripe InGaAsP/InP buried heterostructure lasers , 1980 .

[3]  T. Mukai,et al.  800 Mbit/s optical transmission experiments with dispersion-free fibres at 1.5 μm , 1980 .

[4]  M. Saruwatari,et al.  Semiconductor laser to single-mode fiber coupler. , 1979, Applied optics.

[5]  Takaaki Mukai,et al.  Long-span single-mode fiber transmission characteristics in long wavelength regions , 1980 .

[6]  Suzuki Nobuo,et al.  Ceramic capillary connector for 1.3 μm single-mode fibres , 1979 .

[7]  T. Ito,et al.  Transmission experiments in the 1.2-1.6-µm wavelength region using graded-index optical-fiber cables , 1979 .

[8]  Tatsuya Kimura,et al.  Gain and saturation power of resonant AlGaAs laser amplifier , 1980 .

[9]  F. W. Ostermayer,et al.  Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials , 1973 .

[10]  M. Takusagawa,et al.  Self‐aligned structure InGaAsP/InP DH lasers , 1979 .

[11]  I. Jacobs,et al.  FT3—A metropolitan trunk lightwave system , 1980, Proceedings of the IEEE.

[12]  Nakagawa Kiyoshi,et al.  800 Mb/s fibre transmission test using low-loss and low-dispersion single-mode cable , 1979 .

[13]  C.D. Anderson,et al.  An undersea communication system using fiberguide cables , 1980, Proceedings of the IEEE.

[14]  Wataru Susaki,et al.  InGaAsP/InP buried crescent laser emitting at 1.3 μm with very low threshold current , 1980 .

[15]  T. Izawa,et al.  Materials and processes for fiber preform fabrication—Vapor-phase axial deposition , 1980, Proceedings of the IEEE.

[16]  Yutaka Katsuyama,et al.  Suitable parameters of single-mode optical fibre , 1979 .

[17]  Kiyoshi Nakagawa,et al.  Detailed evaluation of an attainable repeater spacing for fibre transmission at 1.3 μm and 1.55 μm wavelengths , 1979 .

[18]  K. Nawata,et al.  Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser , 1977 .

[19]  M. Kawachi,et al.  Polarisation characteristics in long length v.a.d. single-mode fibres , 1980 .

[20]  Mitsuho Yasu,et al.  VAD single mode fibre with 0.2 dB/km loss , 1981 .

[21]  Y. Suematsu,et al.  1.5-1.6 μm GaInAsP/InP Integrated twin-guide lasers with first-order distributed Bragg reflectors , 1980 .

[22]  K. Nakagawa,et al.  Laser Mode Partition Noise Evaluation for Optical Fiber Transmission , 1980, IEEE Trans. Commun..