Convergence of finite elements on an evolving surface driven by diffusion on the surface
暂无分享,去创建一个
Buyang Li | Balázs Kovács | Christian Lubich | Christian A. Power Guerra | C. Lubich | Buyang Li | C. Guerra | Balázs Kovács
[1] R. Nürnberg,et al. Erratum: Numerical computations of the dynamics of fluidic membranes and vesicles [Phys. Rev. E 92, 052704 (2015)]. , 2016, Physical Review E.
[2] John W. Barrett,et al. Numerical Analysis for a System Coupling Curve Evolution to Reaction Diffusion on the Curve , 2016, SIAM J. Numer. Anal..
[3] Balázs Kovács,et al. High-order evolving surface finite element method for parabolic problems on evolving surfaces , 2016, 1606.07234.
[4] Harald Garcke,et al. A stable numerical method for the dynamics of fluidic membranes , 2016, Numerische Mathematik.
[5] Paola Pozzi,et al. Curve shortening flow coupled to lateral diffusion , 2015, Numerische Mathematik.
[6] Bal'azs Kov'acs,et al. Maximum norm stability and error estimates for the evolving surface finite element method , 2015, 1510.00605.
[7] Harald Garcke,et al. Numerical computations of the dynamics of fluidic membranes and vesicles. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] Bal'azs Kov'acs,et al. Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces , 2015, 1503.08990.
[9] Bal'azs Kov'acs,et al. Higher-order time discretizations with ALE finite elements for parabolic problems on evolving surfaces , 2014, 1410.0486.
[10] C. M. Elliott,et al. Error analysis for an ALE evolving surface finite element method , 2014, 1403.1402.
[11] Chandrasekhar Venkataraman,et al. Backward difference time discretization of parabolic differential equations on evolving surfaces , 2013 .
[12] Harald Garcke,et al. A Stable Parametric Finite Element Discretization of Two-Phase Navier–Stokes Flow , 2013, Journal of Scientific Computing.
[13] Gerhard Dziuk,et al. Scalar conservation laws on moving hypersurfaces , 2013, 1307.1056.
[14] Charles M. Elliott,et al. Finite element methods for surface PDEs* , 2013, Acta Numerica.
[15] C. M. Elliott,et al. An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .
[16] C. M. Elliott,et al. A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..
[17] Charles M. Elliott,et al. L2-estimates for the evolving surface finite element method , 2012, Math. Comput..
[18] Gerhard Dziuk,et al. Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .
[19] C. M. Elliott,et al. The surface finite element method for pattern formation on evolving biological surfaces , 2011, Journal of mathematical biology.
[20] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[21] Alan Demlow,et al. Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..
[22] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[23] Charles M. Elliott,et al. A free-boundary model for diffusion-induced grain boundary motion , 2001 .
[24] I. Graham,et al. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth , 2001, Journal of mathematical biology.
[25] G. Dziuk,et al. An algorithm for evolutionary surfaces , 1990 .
[26] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[27] Paola Pozzi,et al. Curve shortening ow coupled to lateral diusion , 2015 .
[28] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .