Ecosystem scenarios shape fishermen spatial behavior. The case of the Peruvian anchovy fishery in the Northern Humboldt Current System

A major goal in marine ecology is the understanding of the interactions between the dynamics of the different ecosystem components, from physics to top predators. While fishermen are among the main top predators at sea, almost none of the existing studies on ecology from physics to top predators contemplate fishermen as part of the system. The present work focuses on the coastal processes in the Northern Humboldt Current System, which encompasses both an intense climatic variability and the largest monospecific fishery of the world. From concomitant satellite, acoustic survey and Vessel Monitoring System data (~90000 fishing trips) for a ten-year period (2000-2009), we quantify the associations between the dynamics of the spatial behavior of fishermen, environmental conditions and anchovy (Engraulis ringens) biomass and spatial distribution. Using multivariate statistical analyses we show that environmental and anchovy conditions do significantly shape fishermen spatial behavior and present evidences that environmental fluctuations smoothed out along trophic levels. We propose a retrospective analysis of the study period in the light of the ecosystem scenarios evidenced and we finally discuss the potential use of fishermen spatial behavior as ecosystem indicator.

[1]  H. Weimerskirch,et al.  Local depletion by a fishery can affect seabird foraging , 2012 .

[2]  Rubén Alfaro Aguilera,et al.  INSTITUTO DEL MAR DEL PERU , 2008 .

[3]  Steven J. Bograd,et al.  Biologging technologies: new tools for conservation. Introduction , 2010 .

[4]  M. Lengaigne,et al.  Patterns in the spatial distribution of Peruvian anchovy (Engraulis ringens) revealed by spatially explicit fishing data , 2008 .

[5]  Simon Jennings,et al.  Indicators to support an ecosystem approach to fisheries , 2005 .

[6]  Ronan Fablet,et al.  Hidden Markov Models: The Best Models for Forager Movements? , 2013, PloS one.

[7]  E. K. Pikitch,et al.  Ecosystem-Based Fishery Management , 2004, Science.

[8]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[9]  N. Stenseth,et al.  Does increasing mortality change the response of fish populations to environmental fluctuations? , 2012, Ecology letters.

[10]  S. Hooker,et al.  Making protected area networks effective for marine top predators , 2011 .

[11]  K. Cochrane,et al.  Ecosystem approach to fisheries: a review of implementation guidelines , 2005 .

[12]  Cynthia J. Decker,et al.  A Census of marine life: unknowable or just unknown? Un recensement de la vie marine : impossible à connaître ou simplement inconnu ? , 2002 .

[13]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[14]  J. Altmann,et al.  Observational study of behavior: sampling methods. , 1974, Behaviour.

[15]  Christian Rutz,et al.  New frontiers in biologging science , 2009, Biology Letters.

[16]  D. Gutiérrez,et al.  Change in El Niño flavours over 1958–2008: Implications for the long-term trend of the upwelling off Peru , 2012 .

[17]  Elliott L. Hazen,et al.  The Relationship among Oceanography, Prey Fields, and Beaked Whale Foraging Habitat in the Tongue of the Ocean , 2011, PloS one.

[18]  M. Graco,et al.  Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid‐twentieth century , 2011 .

[19]  F. Chavez,et al.  Biological Consequences of El Ni�o , 1983, Science.

[20]  N. Wolff,et al.  Trophic relationships and oceanography on and around a small offshore bank , 2008 .

[21]  S. Siegel,et al.  Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.

[22]  Pejman Rohani,et al.  Intrinsically generated coloured noise in laboratory insect populations , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  P. Brehmer,et al.  Fisheries Acoustics: Theory and Practice, 2nd edn , 2006 .

[24]  M. McManus,et al.  Plankton distribution and ocean dispersal , 2012, Journal of Experimental Biology.

[25]  José Garcés-Vargas,et al.  Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean , 2009 .

[26]  M. Ohman,et al.  A double-integration hypothesis to explain ocean ecosystem response to climate forcing , 2013, Proceedings of the National Academy of Sciences.

[27]  Murdoch K. McAllister,et al.  A perspective on the use of spatialized indicators for ecosystem-based fishery management through spatial zoning , 2005 .

[28]  Y. Shin,et al.  Relating marine ecosystem indicators to fishing and environmental drivers: an elucidation of contrasting responses , 2010 .

[29]  Sophie Bertrand,et al.  The relationship of anchovy and sardine to water masses in the Peruvian Humboldt Current System from 1983 to 2005 , 2008 .

[30]  Clare B. Embling,et al.  Fish behaviour in response to tidal variability and internal waves over a shelf sea bank , 2013 .

[31]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[32]  S. Levin The problem of pattern and scale in ecology , 1992 .

[33]  S. Pimm The Balance of Nature?: Ecological Issues in the Conservation of Species and Communities , 1992 .

[34]  Owen L. Petchey,et al.  Environmental colour affects aspects of single–species population dynamics , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Sophie Bertrand,et al.  Scale-invariant movements of fishermen: the same foraging strategy as natural predators. , 2007, Ecological applications : a publication of the Ecological Society of America.

[36]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[37]  Michel J. Kaiser,et al.  Confidentiality over fishing effort data threatens science and management progress , 2013 .

[38]  Mariano Gutiérrez,et al.  Protocolo técnico para la evaluación acústica de las áreas de distribución y abundancia de recursos pelágicos en el mar peruano. Versión 2009 , 2009 .

[39]  J. Santora,et al.  Spatial ecology of krill, micronekton and top predators in the central California Current: Implications for defining ecologically important areas , 2012 .

[40]  G. Swartzman,et al.  Anchovy (Engraulis ringens) and sardine (Sardinops sagax) spatial dynamics and aggregation patterns in the Humboldt Current ecosystem, Peru, from 1983–2003 , 2007 .

[41]  C. J. Camphuysen,et al.  Top Predators in Marine Ecosystems: Their Role in Monitoring and Management , 2006 .

[42]  Stéphane Dray,et al.  The ade4 Package-II: Two-table and K-table Methods , 2007 .

[43]  E. Simmonds,et al.  Optimizing the design of acoustic surveys of Peruvian anchoveta , 2009 .

[44]  Miguel Ñiquen,et al.  Regime shifts in the Humboldt Current ecosystem , 2004 .

[45]  James C. McWilliams,et al.  1997-1998 El Niño off Peru: A numerical study , 2008 .

[46]  F. Chavez,et al.  The northern Humboldt Current System: Brief history, present status and a view towards the future , 2008 .

[47]  T. Roslin,et al.  Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology , 2007 .

[48]  Jean-Louis Reyss,et al.  Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age , 2008 .

[49]  F. Colas,et al.  Sensitivity of the Northern Humboldt Current System nearshore modeled circulation to initial and boundary conditions , 2011 .

[50]  Julien Claude,et al.  Morphometrics with R , 2009 .

[51]  Sophie Bertrand,et al.  Optimization of an artificial neural network for identifying fishing set positions from VMS data: An example from the Peruvian anchovy purse seine fishery , 2011 .

[52]  R. Margalef The Organization of Space , 1979 .

[53]  F. Chavez,et al.  Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific , 2011, PloS one.

[54]  S. Bhagwat,et al.  Optimization of an Artificial Neural Network for Modeling Protein Solubility , 2005 .

[55]  Sophie Bertrand,et al.  Lévy trajectories of Peruvian purse-seiners as an indicator of the spatial distribution of anchovy ( Engraulis ringens ) , 2005 .

[56]  Bernardo Spagnolo,et al.  Lévy Flight Superdiffusion: an Introduction , 2008, Int. J. Bifurc. Chaos.

[57]  S. Bertrand,et al.  Impacts of Kelvin wave forcing in the Peru Humboldt Current system: Scenarios of spatial reorganizations from physics to fishers , 2008 .

[58]  Miguel Ñiquen,et al.  Impact of El Niño events on pelagic fisheries in Peruvian waters , 2004 .

[59]  W. Mooij,et al.  How to measure top–down vs bottom–up effects: a new population metric and its calibration on Daphnia , 2013 .

[60]  Christian Mullon,et al.  Interdecadal variability of anchoveta abundance and overcapacity of the fishery in Peru , 2008 .

[61]  Pierre Fréon,et al.  Dynamics of pelagic fish distribution and behaviour : effects on fisheries and stock assessment , 1999 .

[62]  Olivier Aumont,et al.  The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: A modelling study , 2008 .

[63]  P. Matson,et al.  Special Feature: The Relative Contributions to Top‐Down and Bottom‐Up Forces in Population and Community Ecology , 1992 .

[64]  J. Illian,et al.  Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach , 2012 .

[65]  Sophie Bertrand,et al.  Interactions between fish and fisher's spatial distribution and behaviour: an empirical study of the anchovy (Engraulis ringens) fishery of Peru , 2004 .

[66]  K. Ruben Gabriel,et al.  A permutation test of association between configurations by means of the rv coefficient , 1998 .

[67]  M. Graco,et al.  Oxygenation episodes on the continental shelf of central Peru: Remote forcing and benthic ecosystem response , 2008 .

[68]  J. Manners,et al.  A perspective. , 2006, Annals of cardiac anaesthesia.

[69]  K. Mann,et al.  Dynamics of Marine Ecosystems , 1991 .

[70]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[71]  H. Browman,et al.  Perspectives on ecosystem-based approaches to the management of marine resources , 2004 .

[72]  A. Bertrand,et al.  From small‐scale habitat loopholes to decadal cycles: a habitat‐based hypothesis explaining fluctuation in pelagic fish populations off Peru , 2004 .

[73]  Daniel P. Costa,et al.  THE SECRET LIFE OF MARINE MAMMALS NOVEL TOOLS FOR STUDYING THEIR BEHAVIOR AND BIOLOGY AT SEA , 1993 .

[74]  I. Boyd,et al.  Bio-logging science: sensing beyond the boundaries , 2004 .

[75]  C. Krebs The balance of nature? Ecological issues in the conservation of species and communities , 1992 .

[76]  James E. Wilen,et al.  Spatial Management of Fisheries , 2003, Marine Resource Economics.

[77]  T. Defler The time budget of a group of wild woolly monkeys (Lagothrix lagotricha) , 1995, International Journal of Primatology.

[78]  Barbara Drossel,et al.  Complexity-stability relations in generalized food-web models with realistic parameters. , 2012, Journal of theoretical biology.

[79]  E. John Simmonds,et al.  Fisheries Acoustics: Theory and Practice , 2005 .

[80]  Scott R. Benson,et al.  From wind to whales: trophic links in a coastal upwelling system , 2005 .

[81]  G. Swartzman,et al.  Zooplankton and forage fish species off Peru: Large-scale bottom-up forcing and local-scale depletion , 2008 .

[82]  Francisco P. Chavez,et al.  From Anchovies to Sardines and Back: Multidecadal Change in the Pacific Ocean , 2003, Science.

[83]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[84]  D. Gutiérrez,et al.  Evaluating fish scale preservation in sediment records from the oxygen minimum zone off Peru , 2012, Paleobiology.

[85]  J. Santora,et al.  Linking predators to seasonality of upwelling: Using food web indicators and path analysis to infer trophic connections , 2012 .

[86]  A. Chaigneau,et al.  Near-coastal circulation in the Northern Humboldt Current System from shipboard ADCP data , 2013 .

[87]  Alexis Chaigneau,et al.  Acoustic Observation of Living Organisms Reveals the Upper Limit of the Oxygen Minimum Zone , 2010, PloS one.

[88]  Paul J. B. Hart,et al.  Searching behaviour and catch of horse mackerel (Trachurus murphyi) by industrial purse-seiners off south-central Chile , 1995 .

[89]  Daniel P. Costa,et al.  THE SECRET LIFE OF MARINE MAMMALS , 2007 .

[90]  ENSO regimes: Reinterpreting the canonical and Modoki El Niño , 2011 .

[91]  In situ measurements of the speed of Peruvian anchovy schools , 2014 .

[92]  P. Testor,et al.  Impact of a coastal‐trapped wave on the near‐coastal circulation of the Peru upwelling system from glider data , 2014 .

[93]  Jason S. Link,et al.  Marine ecosystem assessment in a fisheries management context , 2002 .

[94]  Sébastien Lê,et al.  Exploratory Multivariate Analysis by Example Using R , 2010 .

[95]  D. Chessel,et al.  Analyses de la co-inertie de K nuages de points , 1996 .

[96]  T. Benton,et al.  The Amplification of Environmental Noise in Population Models: Causes and Consequences , 2003, The American Naturalist.

[97]  Y. Escoufier LE TRAITEMENT DES VARIABLES VECTORIELLES , 1973 .

[98]  Jorge Tam,et al.  Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach , 2005 .

[99]  M. Graco,et al.  Intraseasonal variability of nearshore productivity in the Northern Humboldt Current System: The role of coastal trapped waves , 2014 .