Ultrasonic backscatter system for automated on-line endocardial boundary detection: evaluation by ultrafast computed tomography.

OBJECTIVES The purpose of this study was to evaluate the accuracy of the recently developed echocardiographic on-line endocardial border detection system using ultrafast computed tomography, an independent and proved tomographic imaging modality. BACKGROUND The automated system for on-line endocardial border detection identifies the blood-tissue interface by acoustic quantification of the ultrasonic backscatter signal. METHODS Eighteen subjects were screened by conventional echocardiography and acoustic quantification. Ten of these, with high quality echocardiographic images, were also examined by ultrafast computed tomography. Comparable image planes at the midpapillary level were analyzed. Measurements of left ventricular cavity area were compared at end-diastole and end-systole and time course analyses of cavity area during the cardiac cycle were performed. RESULTS There was good correlation between values for left ventricular end-diastolic area (r = 0.99), end-systolic area (r = 0.93) and fractional area change (r = 0.91) using the two methods. The on-line backscatter system underestimated end-diastolic area (p < 0.001), but the negative bias was small (-1.6 cm2) and the 95% confidence intervals were narrow (-3.6 cm2 to +0.4 cm2). In contrast, the backscatter system overestimated end-systolic area (p < 0.02); the positive bias for this variable was also small (+2.6 cm2) but the confidence intervals were relatively wide (+7.9 to -2.8 cm2). The negative bias of backscatter values for cavity area was fairly constant during diastole and early systole (range -5% to -10%), but during the second half of systole, backscatter values increased progressively relative to computed tomographic values. Real time values for fractional area change measured by the backscatter system were 13% smaller than those determined by ultrafast computed tomography (p < 0.001), with wide confidence intervals (+3% to -30%). Absolute peak rates of area change during systole and diastole were lower by 39% (p < 0.001) and 41% (p < 0.01), respectively, using the on-line ultrasonic backscatter system. Time course analyses revealed the errors to be consistent with cardiac cycle-dependent alterations in gain sensitivity of the ultrasonic backscatter system. CONCLUSIONS The ultrasonic backscatter system is associated with cyclic cavity area measurement errors that need to be addressed if its early promise for on-line assessment of ventricular function is to be fulfilled. Incorporation of an electrocardiographically triggered time-varying gain control may improve accuracy for on-line analysis of ventricular performance.

[1]  I Schnittger,et al.  Ultrasonic tissue characterization with a real time integrated backscatter imaging system in normal and aging human hearts. , 1989, Journal of the American College of Cardiology.

[2]  S. M. Collins,et al.  Sectional and segmental variability of left ventricular function: experimental and clinical studies using ultrafast computed tomography. , 1988, Journal of the American College of Cardiology.

[3]  M R Rees,et al.  Heart evaluation by cine CT: use of two new oblique views. , 1986, Radiology.

[4]  S. M. Collins,et al.  Diagnosis of recent myocardial infarction with quantitative backscatter imaging: preliminary studies. , 1991, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[5]  J. G. Miller,et al.  Anisotropy of the ultrasonic backscatter of myocardial tissue: II. Measurements in vivo. , 1988, The Journal of the Acoustical Society of America.

[6]  J. G. Miller,et al.  On-line assessment of ventricular function by automatic boundary detection and ultrasonic backscatter imaging. , 1992, Journal of the American College of Cardiology.

[7]  M. Marcus,et al.  Patterns of regional diastolic function in the normal human left ventricle: an ultrafast computed tomographic study. , 1989, Journal of the American College of Cardiology.

[8]  R. P. Martin,et al.  Real time ultrasound quantification of ventricular function: has the eyeball been replaced or will the subjective become objective. , 1992, Journal of the American College of Cardiology.

[9]  M. Marcus,et al.  Precision of measurements of right and left ventricular volume by cine computed tomography. , 1986, Circulation.

[10]  L.J. Thomas,et al.  Quantitative real-time imaging of myocardium based on ultrasonic integrated backscatter , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  J. G. Miller,et al.  Quantitative ultrasonic tissue characterization with real-time integrated backscatter imaging in normal human subjects and in patients with dilated cardiomyopathy. , 1987, Circulation.

[12]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[13]  A. Beckett,et al.  AKUFO AND IBARAPA. , 1965, Lancet.

[14]  S. M. Collins,et al.  Cyclic variation of ultrasound backscatter in normal myocardium is view dependent: clinical studies with a real-time backscatter imaging system. , 1989, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.