We present a gênerai algorithm which computes an exact description of the set of ail placements for a polygon I (with m edges) which is free to translate and/or to rotate but not to intersect another polygon E (with n edges). The time complexity of our algorithm is O(mn log mn) which is close to optimal in the worst-case. Moreover, in some practical situations, the time complexity is only O (n log n). This algorithm is rather simple and has been implemented. It can be used as an efficient tool in several applications such as cutting stock, inspection and motion planning for a two dimensional robot admidst polygonal obstacles. Résumé. Cet article présente un algorithme général qui calcule une description analytique exacte de Vensemble des placements d'un polygone I (ayant m arêtes) libre de se déplacer en translation et rotation dans le plan sans intersecter un polygone E (ayant n arêtes). La complexité de l'algorithme est O (m n log mn) ce qui est proche de l'optimal dans le cas le pire. On montre de plus que la complexité réelle de Valgorithme, dans certaines situations pratiques est O (n log n). Valgorithme présenté est assez simple et a été implanté. Il recouvre un champ d'applications varié incluant les problèmes de découpe automatique, de conformité de pièces industrielles ou les problèmes de planifications de trajectoires pour un robot mobile plan évoluant au milieu d'obstacles polygonaux.
[1]
Jean-Daniel Boissonnat,et al.
A practical exact motion planning algorithm for polygonal object amidst polygonal obstacles
,
1988,
Geometry and Robotics.
[2]
J. Schwartz,et al.
On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers
,
1983
.
[3]
Micha Sharir,et al.
On the number of critical free contacts of a convex polygonal object moving in two-dimensional polygonal space
,
1987,
Discret. Comput. Geom..
[4]
Michael Ian Shamos,et al.
Computational geometry: an introduction
,
1985
.
[5]
Derick Wood,et al.
A fast algorithm for the Boolean masking problem
,
1985,
Comput. Vis. Graph. Image Process..
[6]
Jean-Daniel Boissonnat,et al.
Simultaneous containment of several polygons
,
1987,
SCG '87.
[7]
Micha Sharir,et al.
An efficient motion-planning algorithm for a convex polygonal object in two-dimensional polygonal space
,
1990,
Discret. Comput. Geom..
[8]
Aaas News,et al.
Book Reviews
,
1893,
Buffalo Medical and Surgical Journal.
[9]
Steven Fortune.
A Fast Algorithm for Polygon Containment by Translation (Extended Abstract)
,
1985,
ICALP.