Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review

Hydrogen is considered a good energy carrier candidate for future automotive applications that could be part of a carbon-free cycle. Metal hydrides are often preferred over pressurized gas and other hydrogen storage methods because of their gravimetric and volumetric storage capacities and safe operating pressures. In addition to the hydrogen storage capacity, other properties that have often been disregarded must now be addressed before hydrogen storage in metal hydrides becomes feasible. The slow hydriding/dehydriding kinetics, high release temperature, low storage efficiency due to the high enthalpy of formation, and thermal management during the hydriding reaction remain important difficulties in meeting the objectives set by the Department of Energy (DOE) for hydrogen storage systems. Nanotechnology offers new ways of addressing those issues by taking advantage of the distinctive chemical and physical properties observed in nanostructures. Nanostructured materials significantly improve the reaction kinetics, reduce the enthalpy of formation, and lower the hydrogen absorption and release temperatures through destabilization of the metal hydride and multiple catalytic effects in the system. But nanostructures can also lead to poor cyclability, degradation of the sorption properties, and a significant reduction of the thermal conductivity that could make metal hydrides impractical for hydrogen storage. This review summarizes the effects that nanotechnology can have on the main properties of metal hydrides and highlights the main competing behaviours between the system requirements, the necessary trade-offs, and the research priorities necessary to obtain hydride storage materials for practical automotive applications. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  D. Wolf Correlation between the energy and structure of grain boundaries in b.c.c. metals I. Symmetrical boundaries on the (110) and (100) planes , 1989 .

[2]  S. Parker,et al.  Hydrogen Spillover on Carbon-Supported Metal Catalysts Studied by Inelastic Neutron Scattering. Surface Vibrational States and Hydrogen Riding Modes , 2003 .

[3]  M. Fine Introduction to phase transformations in condensed systems , 1964 .

[4]  Smith,et al.  Theory of the bimetallic interface. , 1985, Physical review. B, Condensed matter.

[5]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[6]  R. Roberge,et al.  Hydrogen storage properties of nano-composites of Mg and Zr-Ni-Cr alloys , 2000 .

[7]  J. Ogden PROSPECTS FOR BUILDING A HYDROGEN ENERGY INFRASTRUCTURE , 1999 .

[8]  Jeffrey Wadsworth,et al.  Hall-petch relation in nanocrystalline solids , 1991 .

[9]  Ilya Prigogine,et al.  Surface tension and adsorption , 1966 .

[10]  S. Pyun,et al.  Hydrogen transport through Pd electrode: current transient analysis , 1997 .

[11]  T. Oi,et al.  Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger , 2004 .

[12]  H. Gleiter,et al.  The vibrational excitations and the position of hydrogen in nanocrystalline palladium , 1995 .

[13]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[14]  J. Soubeyroux,et al.  Effect of nickel alloying by using ball milling on the hydrogen absorption properties of TiFe , 1999 .

[15]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[16]  P. Peshev,et al.  Hydriding and dehydriding characteristics of mixtures with a high magnesium content obtained by sintering and mechanical alloying , 1995 .

[17]  Fecht Intrinsic instability and entropy stabilization of grain boundaries. , 1990, Physical review letters.

[18]  A. Załuska,et al.  Nanocrystalline metal hydrides , 1997 .

[19]  E. David An overview of advanced materials for hydrogen storage , 2005 .

[20]  A. Załuska,et al.  Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi , 1995 .

[21]  E. Fromm,et al.  Absorption and desorption kinetics of hydrogen storage alloys , 1996 .

[22]  J. Gore,et al.  A Review of Heat Transfer Issues in Hydrogen Storage Technologies , 2005 .

[23]  K. Kim,et al.  Metal hydride compacts of improved thermal conductivity , 2001 .

[24]  H. Bhadeshia Mechanically alloyed metals , 2000 .

[25]  G. Zerbi,et al.  Adsorption of H 2 on carbon-based materials: A Raman spectroscopy study , 2005 .

[26]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[27]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[28]  R. Doremus,et al.  Rates of phase transformations , 1985 .

[29]  A. Załuska,et al.  Nanocrystalline Hydrogen Absorbing Alloys , 1996 .

[30]  Robert C. Bowman,et al.  Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si , 2004 .

[31]  M. Abdellaoui,et al.  Structural investigation and solid-H2 reaction of Mg2Ni rich nanocomposite materials elaborated by mechanical alloying , 1999 .

[32]  Samuel Glasstone,et al.  Textbook of physical chemistry , 1941 .

[33]  B. Hjörvarsson,et al.  Hydride formation in MgZrFe1.4Cr0.6 composite material , 1994 .

[34]  Jingli Luo,et al.  Study of hydrogen diffusion in a- and -phase hydrides of Mg 2Ni alloy by microelectrode technique , 2001 .

[35]  Y. Matsumura,et al.  Hydrogen absorption of nanocrystalline palladium , 2002 .

[36]  R. L. Holtz,et al.  Hydrogen storage capacity of submicron magnesium–nickel alloys , 1997 .

[37]  A. Załuska,et al.  Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis , 1999 .

[38]  C. E. Rasmussen,et al.  Surface tension of quantum fluids from molecular simulations. , 2004, The Journal of chemical physics.

[39]  M. Dornheim,et al.  Tailoring Hydrogen Storage Materials Towards Application , 2006 .

[40]  A. Załuska,et al.  Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage , 2001 .

[41]  Liming Peng,et al.  Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy , 2007 .

[42]  Roy L. Johnston,et al.  Atomic and molecular clusters , 2002 .

[43]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .

[44]  M. Jurczyk,et al.  Thermodynamic and electrochemical properties of nanocrystalline Mg 2Cu-type hydrogen storage materials , 2007 .

[45]  M. Groll,et al.  Heat transfer characteristics of expanded graphite matrices in metal hydride beds , 2004 .

[46]  A. Załuska,et al.  Sodium alanates for reversible hydrogen storage , 2000 .

[47]  S. Pyun,et al.  Hydrogen absorption and diffusion into and in palladium: ac-impedance analysis under impermeable boundary conditions , 1996 .

[48]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[49]  K. Nahm,et al.  The reaction kinetics of hydrogen storage in LaNi5 , 1990 .

[50]  J. Tu,et al.  The absorption and desorption properties of nanocrystalline Mg2Ni0.75Cr0.25 alloy containing TiO2 nanoparticles , 2003 .

[51]  S. Suda,et al.  Study of the hydriding kinetics of LaNi4.7Al0.3H system by a step-wise method , 1990 .

[52]  T. Masumoto,et al.  Effect of ball milling on hydrogen absorption properties of FeTi, Mg2Ni and LaNi5 , 1995 .

[53]  H. Imamura,et al.  Hydriding–dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon , 2000 .

[54]  P. Peshev,et al.  Hydrogen sorption properties of the nanocomposites Mg–Mg2Ni1−xFex , 2002 .

[55]  R. Birringer,et al.  On the room-temperature grain growth in nanocrystalline copper , 1994 .

[56]  K. Yamaji,et al.  Reaction kinetics of LaNi5 , 1983 .

[57]  S. Dou,et al.  Characteristics of magnesium-based hydrogen-storage alloy electrodes , 1995 .

[58]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[59]  H. Aoki,et al.  TED-AJ03-145 NUMERICAL ANALYSIS OF ABSORBING AND DESORBING MECHANISM FOR THE METAL HYDRIDE BY HOMOGENIZATION METHOD , 2003 .

[60]  M. Groll,et al.  Expanded graphite as heat transfer matrix in metal hydride beds , 2003 .

[61]  M. W. Cole,et al.  Hydrogen Adsorption in Nanotubes , 1998 .

[62]  H. Uchida,et al.  Thermodynamic properties of hydrogen in fine Pd powders , 1999 .

[63]  E. D. Hondros,et al.  Interfacial and surface microchemistry. , 1996 .

[64]  G. Sandrock,et al.  Catalyzed Complex Metal Hydrides , 2002 .

[65]  J. H. van Lenthe,et al.  Hydrogen storage in magnesium clusters: quantum chemical study. , 2005, Journal of the American Chemical Society.

[66]  J. Eckert Relationships governing the grain size of nanocrystalline metals and alloys , 1995 .

[67]  L. Belkbir,et al.  Evolution of the kinetic properties in a family of substituted LaNi5 hydrides during activating formation-decomposition cycling☆ , 1980 .

[68]  R. Birringer,et al.  Thermodynamics of nanocrystalline platinum , 1993 .

[69]  J. Bockris,et al.  The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment , 2002 .

[70]  R. Birringer,et al.  Hydrogen in amorphous and nanocrystalline metals , 1988 .

[71]  A. Züttel,et al.  Mechanically milled Mg composites for hydrogen storage: The relationship between morphology and kinetics , 1998 .

[72]  M. Jurczyk Nanocrystalline materials for hydrogen storage , 2006 .

[73]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[74]  R. Schulz,et al.  Hydrogen absorption properties of a mechanically milled Mg–50 wt.% LaNi5 composite , 1998 .

[75]  Armin D. Ebner,et al.  Practical modeling of metal hydride hydrogen storage systems , 2003 .

[76]  Michele Parrinello,et al.  Review of theoretical calculations of hydrogen storage in carbon-based materials , 2001 .

[77]  Reiner Kirchheim,et al.  Solubility of hydrogen in single-sized palladium clusters , 2001 .

[78]  Qin Lin,et al.  Kinetics of absorption and desorption of hydrogen in alloy powder , 2005 .

[79]  E. Akiba,et al.  Ball-milling of Mg2Ni under hydrogen , 1998 .

[80]  J. Bockris Hydrogen economy in the futurefn2 , 1999 .

[81]  H. Fecht Thermodynamic properties and stability of grain boundaries in metals based on the universal equation of state at negative pressure , 1990 .

[82]  P. Fayet,et al.  Abnormally large deuterium uptake on small transition metal clusters , 1990 .

[83]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .