Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation

Ni–Al–Co is a promising system for ferromagnetic shape memory applications. This paper reports on the development of a ternary embedded-atom potential for this system by fitting to experimental and first-principles data. Reasonably good agreement is achieved for physical properties between values predicted by the potential and values known from experiment and/or first-principles calculations. The potential reproduces basic features of the martensitic phase transformation from the B2-ordered high-temperature phase to a tetragonal CuAu-ordered low-temperature phase. The compositional and temperature ranges of this transformation and the martensite microstructure predicted by the potential compare well with existing experimental data. These results indicate that the proposed potential can be used for simulations of the shape memory effect in the Ni–Al–Co system.

[1]  Ł. Rogal,et al.  Microstructure of ball milled and compacted Co–Ni–Al alloys from the β range , 2009, Journal of microscopy.

[2]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[3]  Toshihiro Tanaka,et al.  Bulk and surface properties of Al–Co and Co–Ni liquid alloys , 2006 .

[4]  Yang,et al.  Neutron scattering study of the martensitic transformation in a Ni-Al beta -phase alloy. , 1989, Physical review letters.

[5]  Michael Widom,et al.  First-principles interatomic potentials for transition-metal aluminides: Theory and trends across the 3d series , 1997 .

[6]  Sidney Yip,et al.  Handbook of Materials Modeling , 2005 .

[7]  David J. Srolovitz,et al.  Atomistic Simulation of Materials , 1989 .

[8]  G. P. P. Pun,et al.  Development of an interatomic potential for the Ni-Al system , 2009 .

[9]  T. J. Delph,et al.  Stress calculation in atomistic simulations of perfect and imperfect solids , 2001 .

[10]  A. Voter,et al.  Calculation of point-defect entropy in metals , 2001 .

[11]  R. Gopalan,et al.  Effect of annealing on the martensitic transformation of a CoNiAl ferromagnetic shape memory alloy , 2010 .

[12]  Y. Mishin,et al.  Atomistic modeling of the γ and γ'-phases of the Ni-Al system , 2004 .

[13]  David J. Singh,et al.  Properties of ordered intermetallic alloys: first-principles and approximate methods , 1993 .

[14]  Michael J. Mehl,et al.  Embedded-atom potential for B2-NiAl , 2002 .

[15]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[16]  Klein,et al.  Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. , 1990, Physical review. B, Condensed matter.

[17]  Yufeng Zheng,et al.  TRANSFORMATION BEHAVIOR AND SHAPE MEMORY EFFECT OF A CoAl ALLOY , 2009 .

[18]  D. Farkas,et al.  Atomistic simulation of fracture in CoAl and FeAl , 1998 .

[19]  G. P. P. Pun,et al.  Embedded-atom potential for hcp and fcc cobalt , 2012 .

[20]  W. Steurer,et al.  Structural disorder in the decagonal Al-Co-Ni. II. Modeling , 2005 .

[21]  Y. Mishin Calculation of the γ/γ′ interface free energy in the Ni–Al system by the capillary fluctuation method , 2013, 1308.4472.

[22]  Y. Mishin,et al.  Interatomic Potentials for Metals , 2005 .

[23]  J. Grin,et al.  Crystal structure of orthorhombic Co4Al13 , 1994 .

[24]  Toshihiro Omori,et al.  Shape memory and magnetic properties of Co–Al ferromagnetic shape memory alloys , 2006 .

[25]  F. Gähler,et al.  Aluminium diffusion in decagonal quasicrystals. , 2004, Physical review letters.

[26]  R. Darolia,et al.  Cleavage fracture in B2 aluminides , 1992 .

[27]  K. Ziebeck,et al.  Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co–Ni–Al and Co–Ni–Ga , 2005 .

[28]  G. P. Das,et al.  Cohesive, electronic and magnetic properties of the transition metal aluminides FeAl CoAl and NiAl , 1995 .

[29]  K. Ishida,et al.  Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems , 2001 .

[30]  M. Daw Embedded Atom Method: Many-Atom Description of Metallic Cohesion , 1989 .

[31]  Yinong Liu,et al.  Phase equilibrium of ferromagnetic shape memory alloy Co39Ni33Al28 , 2006 .

[32]  B. Grushko,et al.  The constitution of aluminum-cobalt alloys between Al5Co2 and Al9Co2 , 1996 .

[33]  N. Kataeva,et al.  Study of ferromagnetic Co–Ni–Al alloys with thermoelastic L10 martensite , 2006 .

[34]  Xingzhong Li,et al.  Crystal structure of the HT-Al3Co phase , 2009 .

[35]  W. Nix,et al.  Dislocations in extruded Co-49.3at% Al , 1986 .

[36]  K. Ishida,et al.  Phase equilibria and microstructural control in the Ni-Co-Al system , 1996 .

[37]  K. Ishida,et al.  Ferromagnetic Co-Ni-Al Shape Memory Alloys with β+γ Two-Phase Structure , 2004 .

[38]  Ying Chen,et al.  Phase Separation of the B2 Structure Accompanied by an Ordering in Co-Al and Ni-Al Binary Systems , 2004 .

[39]  Francesca Tavazza,et al.  Considerations for choosing and using force fields and interatomic potentials in materials science and engineering , 2013 .

[40]  Rabe,et al.  Ab initio pseudopotential calculations for aluminum-rich cobalt compounds. , 1994, Physical review. B, Condensed matter.

[41]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[42]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[43]  Dimitris C. Lagoudas,et al.  Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy , 2003 .

[44]  Hong Yang,et al.  Factors Influencing the Stress-Induced fcc-hcp Martensitic Transformation in Co-32Ni Single Crystal , 2006 .

[45]  M. Widom,et al.  First-principles interatomic potentials for transition-metal aluminides. II. Application to Al-Co and Al-Ni phase diagrams , 1998 .

[46]  H. Morito,et al.  Large magnetic-field-induced strain in Co-Ni-Al single-variant ferromagnetic shape memory alloy , 2010 .

[47]  Rajendra R. Zope,et al.  Interatomic potentials for atomistic simulations of the Ti-Al system , 2003, cond-mat/0306298.

[48]  W. Steurer,et al.  Basic Co-rich decagonal Al-Co-Ni: Average structure , 2009 .

[49]  D. Farkas,et al.  Shear faults and dislocation core structures in B2 CoAl , 1997 .

[50]  Alfredo Caro,et al.  Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys , 2010, 1012.5082.

[51]  K. Ishida,et al.  Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β + γ two-phase structure , 2006 .

[52]  H. Maier,et al.  Thermally and stress-induced martensitic transformation in Co–Ni–Al ferromagnetic shape memory alloy single crystals , 2006 .

[53]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[54]  M. Mihalkovič,et al.  First-principles calculations of cohesive energies in the Al-Co binary alloy system , 2007 .

[55]  M. Widom,et al.  First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams , 2000 .

[56]  J. Hochhalter,et al.  Multiscale modeling of sensory properties of Co–Ni–Al shape memory particles embedded in an Al metal matrix , 2016, Journal of Materials Science.

[57]  P. Gille,et al.  Single crystal growth of Al13Co4 and Al13Fe4 from Al‐rich solutions by the Czochralski method , 2008 .