The Impact of Interpixel Capacitance in CMOS Detectors on PSF Shapes and Implications for WFIRST

Unlike optical CCDs, near-infrared detectors, which are based on CMOS hybrid readout technology, typically suffer from electrical crosstalk between the pixels. The interpixel capacitance (IPC) responsible for the crosstalk affects the point-spread function (PSF) of the telescope, increasing the size and modifying the shape of all objects in the images while correlating the Poisson noise. Upcoming weak lensing surveys that use these detectors, such as WFIRST, place stringent requirements on the PSF size and shape (and the level at which these are known), which in turn must be translated into requirements on IPC. To facilitate this process, we present a first study of the effect of IPC on WFIRST PSF sizes and shapes. Realistic PSFs are forward-simulated from physical principles for each WFIRST bandpass. We explore how the PSF size and shape depends on the range of IPC coupling with pixels that are connected along an edge or corner; for the expected level of IPC in WFIRST, IPC increases the PSF sizes by $\sim$5\%. We present a linear fitting formula that describes the uncertainty in the PSF size or shape due to uncertainty in the IPC, which could arise for example due to unknown time evolution of IPC as the detectors age or due to spatial variation of IPC across the detector. We also study of the effect of a small anisotropy in the IPC, which further modifies the PSF shapes. Our results are a first, critical step in determining the hardware and characterization requirements for the detectors used in the WFIRST survey.

[1]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[2]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[3]  J. Rhodes,et al.  EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.

[4]  B. Hilbert,et al.  Interpixel Capacitance in the IR Channel: Measurements Made On Orbit , 2011 .

[5]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.

[6]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[7]  B. Garilli,et al.  The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field , 2015, 1502.02867.

[8]  Edward J. Wollack,et al.  Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report , 2013, 1305.5422.

[9]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[10]  H. Cease,et al.  CCD testing and characterization for dark energy survey , 2006, SPIE Astronomical Telescopes + Instrumentation.

[11]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[12]  Ori Dosovitz Fox,et al.  The 55Fe X-Ray Energy Response of Mercury Cadmium Telluride Near-Infrared Detector Arrays , 2008, Astronomical Telescopes + Instrumentation.

[13]  Tod R. Lauer,et al.  Combining Undersampled Dithered Images , 1999 .

[14]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[15]  D. Martin,et al.  Characterization of HAWAII-2RG detector and SIDECAR ASIC for the Euclid mission at ESA , 2012, Other Conferences.

[16]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[17]  R. Mandelbaum,et al.  Mapping stellar content to dark matter haloes using galaxy clustering and galaxy–galaxy lensing in the SDSS DR7 , 2015, 1505.02781.

[18]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[19]  R. Newman,et al.  Reciprocity Failure in HgCdTe Detectors: Measurements and Mitigation , 2011, 1106.1090.

[20]  Rachel Mandelbaum,et al.  Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.

[21]  D Wittman,et al.  Cosmic Shear Results from the Deep Lens Survey - I: Two-Dimensional Analysis , 2012 .

[22]  C. Baltay,et al.  Wide-Field InfraRed Survey Telescope WFIRST Final Report , 2012 .

[23]  Andrew S. Fruchter,et al.  A New Method for Band-limited Imaging with Undersampled Detectors , 2011, 1102.0292.

[24]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[25]  T. Tamagawa,et al.  Spurious shear induced by the tree rings of the LSST CCDs , 2015, 1504.05614.

[26]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[27]  Michael D. Schneider,et al.  GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology , 2014, 1412.1825.

[28]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[29]  Ori D. Fox,et al.  The 55 Fe X-Ray Energy Response of Mercury Cadmium Telluride Near-Infrared Detector Arrays , 2009 .

[30]  Peter Schneider,et al.  Weak Gravitational Lensing , 2005, astro-ph/0509252.

[31]  Christopher Hirata,et al.  OPTIMAL LINEAR IMAGE COMBINATION , 2011, 1105.2852.

[32]  P. O'Connor,et al.  Crosstalk in multi-output CCDs for LSST , 2015, 1501.04137.

[33]  L. Bergeron,et al.  Measurement Of The Quantum Efficiency Of An HgCdTe Infrared Sensor Array , 2007 .

[34]  P. Schneider Part 3: Weak gravitational lensing , 2006 .

[35]  H. Hoekstra,et al.  CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions , 2012, 1212.3339.

[36]  H. Hoekstra,et al.  CFHTLenS: co-evolution of galaxies and their dark matter haloes , 2013, 1310.6784.

[37]  John W. MacKenty,et al.  Wide Field Camera 3: a powerful new imager for the Hubble Space Telescope , 2008, Astronomical Telescopes + Instrumentation.

[38]  J. Loveday,et al.  Galaxy And Mass Assembly (GAMA): the halo mass of galaxy groups from maximum-likelihood weak lensing , 2014, 1404.6828.

[39]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[40]  J. Rhodes,et al.  Weak Gravitational Lensing Systematics from Image Combination , 2013, 1310.3339.

[41]  P. McCullough,et al.  Inter-pixel capacitance: prospects for deconvolution , 2008 .

[42]  S. Ho,et al.  Probing gravity at large scales through CMB lensing , 2014, 1412.4454.

[43]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[44]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[45]  D. M. Cole,et al.  Mapping electrical crosstalk in pixelated sensor arrays , 2008, Astronomical Telescopes + Instrumentation.

[46]  Zoran Ninkov,et al.  Quantum efficiency overestimation and deterministic cross talk resulting from interpixel capacitance , 2006 .

[47]  Gary Kuan,et al.  Optical design of the WFIRST-AFTA wide-field instrument , 2014, Other Conferences.

[48]  Armin Karcher,et al.  Status of the CCD development for the Dark Energy Spectroscopic Instrument , 2015 .

[49]  Zoran Ninkov,et al.  Interpixel capacitance in nondestructive focal plane arrays , 2004, SPIE Optics + Photonics.

[50]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.