Machine Learning in Healthcare, Introduction and Real World Application Considerations

MachineLearning,closelyrelatedtoArtificialIntelligenceandstandingattheintersectionofComputer ScienceandMathematicalStatisticalTheory,comesinhandywhenthetruthishidinginaplacethat thehumanbrainhasnoaccessto.Givenanypredictionorassessmentproblem,themorecomplicated thisissueis,basedonthedifficultyofthehumanmindtounderstandtheinherentcausalities/patterns andapplyconventionalmethodstowardsanacceptablesolution,MachineLearningcanfindafertile fieldofapplication.Thisarticle’spurposeistogiveageneralnon-technicaldefinitionofMachine Learning,provideareviewofitslatestimplementationsintheHealthcaredomainandaddtothe ongoingdiscussiononthissubject.Itsuggeststheactiveinvolvementofentitiesbeyondthealready activeacademiccommunity in thequest forsolutions that“exploit”existingdatasetsandcanbe appliedinthedailypractice,embeddedinsidethesoftwareprocessesthatarealreadyinuse. KEyWoRdS Artificial Intelligence, E-Health, Health Sector, Healthcare, ICT, Machine Learning, Medical Software

[1]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[2]  Danilo Bzdok,et al.  Machine learning for precision psychiatry , 2017 .

[3]  Prediction of outcome utilizing both physiological and biochemical parameters in severe head injury. , 2009 .

[4]  Rebecca A. O'Leary,et al.  Classification and Regression Tree and Spatial Analyses Reveal Geographic Heterogeneity in Genome Wide Linkage Study of Indian Visceral Leishmaniasis , 2010, PloS one.

[5]  I. Vlahavas,et al.  Machine Learning and Data Mining Methods in Diabetes Research , 2017, Computational and structural biotechnology journal.

[6]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[7]  K. Borgwardt,et al.  Machine Learning in Medicine , 2015, Mach. Learn. under Resour. Constraints Vol. 3.

[8]  Arthur L. Samuel,et al.  Some studies in machine learning using the game of checkers , 2000, IBM J. Res. Dev..

[9]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[10]  T. Insel,et al.  Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? , 2012, Molecular Psychiatry.

[11]  Rachel M. Brouwer,et al.  Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects , 2014, NeuroImage.

[12]  Josh Bongard,et al.  C L I N I C a L a R T I C L E , 2022 .

[13]  Kiri Wagstaff,et al.  Machine Learning that Matters , 2012, ICML.

[14]  Zhen Liu,et al.  The RODS Open Source Project: Removing a Barrier to Syndromic Surveillance , 2004, MedInfo.

[15]  J. Os,et al.  Cost of disorders of the brain in Europe 2010 , 2011, European Neuropsychopharmacology.

[16]  Dimitrios I. Fotiadis,et al.  Machine learning applications in cancer prognosis and prediction , 2014, Computational and structural biotechnology journal.

[17]  Peter J. McKenna,et al.  Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis , 2017, PloS one.

[18]  A. Statnikov,et al.  Utilization of machine learning for prediction of post-traumatic stress: a re-examination of cortisol in the prediction and pathways to non-remitting PTSD , 2017, Translational Psychiatry.

[19]  Maysam F. Abbod,et al.  Brain death prediction based on ensembled artificial neural networks in neurosurgical intensive care unit , 2011 .

[20]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[21]  Constantin F. Aliferis,et al.  A gentle introduction to support vector machines in biomedicine: Volume 1: Theory and methods , 2011 .

[22]  Róbert Busa-Fekete,et al.  State-of-the-art anonymization of medical records using an iterative machine learning framework. , 2007 .

[23]  A. Marmarou,et al.  Prediction tree for severely head-injured patients. , 1991, Journal of neurosurgery.

[24]  Jiabao He,et al.  Multi-parametric Classification of Traumatic Brain Injury Patients Using Automatic Analysis of Quantitative MRI Scans , 2010, MIAR.

[25]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[26]  Vince D. Calhoun,et al.  Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls , 2017, NeuroImage.

[27]  Chris A Mack,et al.  Fifty Years of Moore's Law , 2011, IEEE Transactions on Semiconductor Manufacturing.

[28]  D. Altman,et al.  Statistics Notes: Diagnostic tests 1: sensitivity and specificity , 1994 .