Sharp bounds for Gauss Lemniscate functions and Lemniscatic means

[1]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[2]  Y. Chu,et al.  Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind , 2020, Applicable Analysis and Discrete Mathematics.

[3]  Yu-Ming Chu,et al.  Asymptotical Bounds for Complete Elliptic Integrals of the Second Kind , 2012, 1209.0066.

[4]  M. Vuorinen,et al.  Chapter 14 - Special Functions in Geometric Function Theory , 2005 .

[5]  Y. Chu,et al.  Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean , 2019, Journal of Inequalities and Applications.

[6]  J. Borwein,et al.  Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .

[7]  W. Khan,et al.  Exploration of Lorentz force on a paraboloid stretched surface in flow of Ree-Eyring nanomaterial , 2020 .

[8]  Y. Chu,et al.  Approximation for the complete elliptic integral of the first kind , 2020 .

[9]  Y. Chu,et al.  Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals , 2019 .

[10]  Edward Neuman,et al.  On lemniscate functions , 2013 .

[11]  Y. Chu,et al.  Optimal two-parameter geometric and arithmetic mean bounds for the Sándor–Yang mean , 2019, Journal of Inequalities and Applications.

[12]  Tie-hong Zhao,et al.  Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means , 2020 .

[13]  Yu-Ming Chu,et al.  Asymptotical formulas for Gaussian and generalized hypergeometric functions , 2016, Appl. Math. Comput..

[14]  G. Anderson,et al.  Conformal Invariants, Inequalities, and Quasiconformal Maps , 1997 .

[15]  H. Alzer Sharp inequalities for the complete elliptic integral of the first kind , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Junwei Lu,et al.  Event-triggered filtering for discrete-time Markovian jump systems with additive time-varying delays , 2021, Appl. Math. Comput..

[17]  Y. Chu,et al.  Asymptotic expansion and bounds for complete elliptic integrals , 2020 .

[18]  Zhen-Hang Yang,et al.  Notes on the complete elliptic integral of the first kind , 2020 .

[19]  Y. Chu,et al.  SHARP TWO PARAMETER BOUNDS FOR THE LOGARITHMIC MEAN AND THE ARITHMETIC-GEOMETRIC MEAN OF GAUSS , 2013 .

[20]  Y. Chu,et al.  Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means , 2017 .

[21]  M. Khan,et al.  Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk , 2021 .

[22]  Chao Chen,et al.  Padé approximant related to inequalities for Gauss lemniscate functions , 2016, Journal of Inequalities and Applications.

[23]  Gendi Wang,et al.  Shafer–Fink type inequalities for arc lemniscate functions , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[24]  Chao Chen,et al.  Sharp Shafer-Fink type inequalities for Gauss lemniscate functions , 2014 .

[25]  Optimal bounds for the tangent and hyperbolic sine means II , 2020 .

[26]  B. C. Carlson Algorithms Involving Arithmetic and Geometric Means , 1971 .

[27]  Muhammad Naeem,et al.  Valency-Based Topological Properties of Linear Hexagonal Chain and Hammer-Like Benzenoid , 2021, Complex..

[28]  Yu-Ming Chu,et al.  SHARP BOUNDS FOR TOADER MEAN IN TERMS OF CONTRAHARMONIC MEAN WITH APPLICATIONS , 2013 .

[29]  Yu-Ming Chu,et al.  On rational bounds for the gamma function , 2017, Journal of Inequalities and Applications.

[30]  M. Khan,et al.  Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface , 2021 .

[31]  Yu-Ming Chu,et al.  Logarithmically Complete Monotonicity Properties Relating to the Gamma Function , 2011 .

[32]  Horst Alzer,et al.  Monotonicity theorems and inequalities for the complete elliptic integrals , 2004 .