Aeolian sediment transport through large patches of roughness in the atmospheric inertial sublayer

[1] Roughness influences the flux of wind-driven sand transport. In this paper, we report on sediment transport measurements for four different surface roughness configurations composed of the same size (solid) roughness elements in the atmospheric inertial sublayer. Results of these tests indicate that sediment transport rates through patches of roughness in the atmospheric inertial sublayer are to a large extent controlled and scale proportionally with the roughness density (λ = nbh/S, where n is number of elements of breadth b and height h in area S) of the surface. However, element size apparently increases the magnitude of the reduction beyond that attributable to λ. A sediment transport model that incorporates the effect of shear stress partitioning appears to predict reasonably well the effect of roughness on sand transport in the cases where the roughness elements are ≤0.10 m in height. However, when the dimensions of the roughness itself are equivalent to or are greater than the range of saltation lengths (vertical and horizontal), additional interactions of the elements with the saltation cloud appear to reduce the transport efficiency.

[1]  Bruce R. White,et al.  An experimental study of Froude number effect on wind-tunnel saltation , 1991 .

[2]  N. Lancaster,et al.  Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California , 1998 .

[3]  P. Jackson On the displacement height in the logarithmic velocity profile , 1981, Journal of Fluid Mechanics.

[4]  Michael Sørensen,et al.  On the rate of aeolian sand transport , 2004 .

[5]  R. Buckley The effect of sparse vegetation on the transport of dune sand by wind , 1987, Nature.

[6]  I. McEwan,et al.  On the prediction of bed‐load sand transport rate in air , 1994 .

[7]  James R. Zimbelman,et al.  Latitude-dependent nature and physical characteristics of transverse aeolian ridges on Mars , 2004 .

[8]  Weinan Chen,et al.  Particle production and aeolian transport from a “supply‐limited” source area in the Chihuahuan desert, New Mexico, United States , 2001 .

[9]  D. Crawley,et al.  Drag Partition for Regularly-Arrayed Rough Surfaces , 2003 .

[10]  Theodore Stathopoulos,et al.  Further experiments on Irwin's surface wind sensor , 1994 .

[11]  M E Davies,et al.  Early views of the martian surface from the Mars Orbiter Camera of Mars Global Surveyor. , 1998, Science.

[12]  D. Gillette,et al.  The effect of nonerodible particles on wind erosion of erodible surfaces , 1989 .

[13]  William G. Nickling,et al.  Wind tunnel evaluation of a wedge-shaped aeolian sediment trap , 1997 .

[14]  Leon Lyles,et al.  How Aerodynamic Roughness Elements Control Sand Movement , 1974 .

[15]  R. Griffiths,et al.  An improved method for the estimation of surface roughness of obstacle arrays , 1998 .

[16]  Domingos Xavier Viegas,et al.  On the use of Irwin and Preston wall shear stress probes in turbulent incompressible flows with pressure gradients , 1996 .

[17]  M. Sørensen,et al.  A review of recent progress in our understanding of aeolian sediment transport , 1991 .

[18]  J. K Marshall,et al.  Drag measurements in roughness arrays of varying density and distribution , 1971 .

[19]  Wim Cornelis,et al.  Optimal windbreak design for wind-erosion control , 2005 .

[20]  John A. Gillies,et al.  Representation of vegetation and other nonerodible elements in aeolian shear stress partitioning models for predicting transport threshold , 2005 .

[21]  A. Baas Evaluation of saltation flux impact responders (Safires) for measuring instantaneous aeolian sand transport intensity , 2004 .

[22]  B. Willetts,et al.  Sand transport and deposition within arrays of non‐erodible cylindrical elements , 1999 .

[23]  C. Neuman,et al.  Development of deflation lag surfaces , 1995 .

[24]  H. Schlichting,et al.  Experimentelle Untersuchungen zum Rauhigkeitsproblem , 1936 .

[25]  C. Neuman Particle transport and adjustments of the boundary layer over rough surfaces with an unrestricted, upwind supply of sediment , 1998 .

[26]  E. F. Bradley,et al.  Drag due to regular arrays of roughness elements of varying geometry , 1973 .

[27]  Yaping Shao,et al.  Numerical Modelling of Saltation in the Atmospheric Surface Layer , 1999 .

[28]  Marleen Logie,et al.  Wind tunnel experiments on dune sands , 1981 .

[29]  M. Raupach,et al.  The effect of roughness elements on wind erosion threshold , 1993 .

[30]  H.P.A.H. Irwin,et al.  A simple omnidirectional sensor for wind-tunnel studies of pedestrian-level winds , 1981 .

[31]  H. Hahn,et al.  Über den Einfluß des Flankenwinkels auf die Spannungserhöhung an Kerben , 1965 .

[32]  C. Neuman,et al.  Aeolian sediment flux decay: Non-linear behaviour on developing deflation lag surfaces , 1995 .

[33]  V. Wyatt,et al.  Drag and shear stress partitioning in sparse desert creosote communities , 1997 .

[34]  M. Raupach Drag and drag partition on rough surfaces , 1992 .

[35]  Lisa R. Gaddis,et al.  Potential Transport of Windblown Sand: Influence of Surface Roughness and Assessment with Radar Data , 1995 .

[36]  Robert S. Anderson,et al.  Sediment transport by wind: Toward a general model , 1986 .