Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers.

In order to increase the dielectric constants of polymer-based dielectrics, composite approaches, in which inorganic fillers with much higher dielectric constants are added to the polar polymer matrix, have been investigated. However, high dielectric constant fillers cause high local electric fields in the polymer, resulting in a large reduction of the electric breakdown strength. We show that a significant increase in the dielectric constant can be achieved in polyetherimide nanocomposites with nanofillers whose dielectric constant can be similar to that of the matrix. The presence of nanofillers reduces the constraints on the dipole response to the applied electric field, thus enhancing the dielectric constant. Our results demonstrate that through nanostructure engineering, the dielectric constant of nanocomposites can be enhanced markedly without using high dielectric constant nanofillers.

[1]  R. Gerhardt,et al.  Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation , 2016 .

[2]  T. Jackson,et al.  Flexible high-temperature dielectric materials from polymer nanocomposites , 2015, Nature.

[3]  Yang Shen,et al.  Polymer-Based Dielectrics with High Energy Storage Density , 2015 .

[4]  Qiming Zhang,et al.  Tailoring the dipole properties in dielectric polymers to realize high energy density with high breakdown strength and low dielectric loss , 2015 .

[5]  M. Litt,et al.  Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups. , 2015, ACS applied materials & interfaces.

[6]  Lili Zhang,et al.  High-Temperature Capacitor Polymer Films , 2014, Journal of Electronic Materials.

[7]  Ghanshyam Pilania,et al.  Rational design of all organic polymer dielectrics , 2014, Nature Communications.

[8]  C. Nan,et al.  Predicting effective magnetoelectric response in magnetic-ferroelectric composites via phase-field modeling , 2014 .

[9]  E. Baer,et al.  Effect of biaxial orientation on dielectric and breakdown properties of poly(ethylene terephthalate)/poly(vinylidene fluoride‐co‐tetrafluoroethylene) multilayer films , 2013 .

[10]  Qin Chen,et al.  Aromatic Polythiourea Dielectrics with Ultrahigh Breakdown Field Strength, Low Dielectric Loss, and High Electric Energy Density , 2013, Advanced materials.

[11]  Lisa A. Fredin,et al.  Sustainable high capacitance at high frequencies: metallic aluminum-polypropylene nanocomposites. , 2013, ACS nano.

[12]  J. Calame,et al.  Electrical properties of BaTiO3 nanoparticles in poly(ether imide) , 2012 .

[13]  T. Hanemann,et al.  Polymer-Nanoparticle Composites: From Synthesis to Modern Applications , 2010, Materials.

[14]  Janet Ho,et al.  Characterization of High Temperature Polymer Thin Films for Power Conditioning Capacitors , 2009 .

[15]  S. Boggs,et al.  Energy storage in polymer films with high dielectric constant fillers [Feature Article] , 2008, IEEE Electrical Insulation Magazine.

[16]  Stephen Ducharme,et al.  Electric energy density of dielectric nanocomposites , 2007 .

[17]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[18]  T. Tanaka,et al.  Dielectric nanocomposites with insulating properties , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[19]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[20]  R. Buchanan Ceramic Materials for Electronics , 2018 .

[21]  T. Lewis Interfaces are the dominant feature of dielectrics at the nanometric level , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[22]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[23]  Hari Singh Nalwa,et al.  Handbook of Low and High Dielectric Constant Materials and Their Applications , 1999 .

[24]  W. Sarjeant,et al.  Capacitors : Pulsed powder science and technology , 1998 .

[25]  D. A. Barrow,et al.  Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process , 1997 .

[26]  T. Takekoshi,et al.  Molecular modeling of polymers for high energy storage capacitor applications , 1992, IEEE 35th International Power Sources Symposium.

[27]  Graham Williams,et al.  Anelastic and Dielectric Effects in Polymeric Solids , 1991 .

[28]  H. Fröhlich,et al.  Theory of Dielectrics: Dielectric Constant and Dielectric Loss , 1960 .