Organic-inorganic hybrids for CO2 sensing, separation and conversion.

Motivated by the air pollution that skyrocketed in numerous regions around the world, great effort was placed on discovering new classes of materials that separate, sense or convert CO2 in order to minimise impact on human health. However, separation, sensing and conversion are not only closely intertwined due to the ultimate goal of improving human well-being, but also because of similarities in material prerequisites -e.g. affinity to CO2. Partly inspired by the unrivalled performance of complex natural materials, manifold inorganic-organic hybrids were developed. One of the most important characteristics of hybrids is their design flexibility, which results from the combination of individual constituents with specific functionality. In this review, we discuss commonly used organic, inorganic, and inherently hybrid building blocks for applications in separation, sensing and catalytic conversion and highlight benefits like durability, activity, low-cost and large scale fabrication. Moreover, we address obstacles and potential future developments of hybrid materials. This review should inspire young researchers in chemistry, physics and engineering to identify and overcome interdisciplinary research challenges by performing academic research but also - based on the ever-stricter emission regulations like carbon taxes - through exchanges between industry and science.

[1]  A. Klumpp,et al.  Towards Low Cost and Low Temperature Capacitive CO2 Sensors Based on Amine Functionalized Silica Nanoparticles , 2019, Nanomaterials.

[2]  Zhong Lin Wang,et al.  3D Heteroatom‐Doped Carbon Nanomaterials as Multifunctional Metal‐Free Catalysts for Integrated Energy Devices , 2019, Advanced materials.

[3]  M. Niederberger,et al.  Photocatalytic Gas Phase Reactions , 2019, Chemistry of Materials.

[4]  L. Dai,et al.  Carbon‐Based Metal‐Free Catalysts for Key Reactions Involved in Energy Conversion and Storage , 2018, Advanced materials.

[5]  Soojin Park,et al.  Comparative study of activation methods to design nitrogen-doped ultra-microporous carbons as efficient contenders for CO2 capture , 2018, Chemical Engineering Journal.

[6]  K. Novoselov,et al.  The Worldwide Graphene Flake Production , 2018, Advanced materials.

[7]  A. Bhaumik,et al.  Porous Organic Polymers for CO2 Storage and Conversion Reactions , 2018, ChemCatChem.

[8]  N. Marzari,et al.  Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction , 2018, Nature Communications.

[9]  T. Jaramillo,et al.  Data Acquisition Protocols and Reporting Standards for Studies of the Electrochemical Reduction of Carbon Dioxide , 2018 .

[10]  E. Ruiz-Hitzky,et al.  History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications , 2018 .

[11]  Chao Wang,et al.  Recent Advances in CO2 Reduction Electrocatalysis on Copper , 2018, ACS Energy Letters.

[12]  Christopher Hahn,et al.  Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide , 2018, ACS Catalysis.

[13]  Seda Keskin,et al.  Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening , 2018, ACS applied materials & interfaces.

[14]  Avelino Corma,et al.  Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles , 2018, Chemical reviews.

[15]  H. Tam,et al.  In situ μ-printed optical fiber-tip CO2 sensor using a photocrosslinkable poly(ionic liquid) , 2018 .

[16]  Ahmed AlSaggaf,et al.  Highly Efficient and Stable CO2 Reduction Photocatalyst with a Hierarchical Structure of Mesoporous TiO2 on 3D Graphene with Few-Layered MoS2 , 2018 .

[17]  G. Wallace,et al.  Solid-State Poly(ionic liquid) Gels for Simultaneous CO2 Adsorption and Electrochemical Reduction , 2018 .

[18]  J. Cho,et al.  Lead-Free Perovskite Nanocrystals for Light-Emitting Devices. , 2018, The journal of physical chemistry letters.

[19]  C. Brinker,et al.  Ultra-thin enzymatic liquid membrane for CO2 separation and capture , 2018, Nature Communications.

[20]  Jacek K. Stolarczyk,et al.  Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures , 2018 .

[21]  Shouqi Yuan,et al.  A Hierarchical Z‑Scheme α‐Fe2O3/g‐C3N4 Hybrid for Enhanced Photocatalytic CO2 Reduction , 2018, Advanced materials.

[22]  O. Yaghi,et al.  The role of reticular chemistry in the design of CO2 reduction catalysts , 2018, Nature Materials.

[23]  X. Lou,et al.  Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction , 2018 .

[24]  J. Hou,et al.  Gelled Graphene Oxide-Ionic Liquid Composite Membranes with Enriched Ionic Liquid Surfaces for Improved CO2 Separation. , 2018, ACS applied materials & interfaces.

[25]  Di Zhang,et al.  3D Printing of Artificial Leaf with Tunable Hierarchical Porosity for CO2 Photoreduction , 2018 .

[26]  Abdullah Kadri,et al.  A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring , 2018, Sensors.

[27]  Andreas Weilhard,et al.  Selective CO2 Hydrogenation to Formic Acid with Multifunctional Ionic Liquids , 2018 .

[28]  Ki-Joong Kim,et al.  Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform. , 2018, ACS sensors.

[29]  S. Kang,et al.  Development of a Lower Energy Photosensitizer for Photocatalytic CO2 Reduction: Modification of Porphyrin Dye in Hybrid Catalyst System , 2018 .

[30]  Jonathan W. Lekse,et al.  Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane. , 2017, Nanoscale.

[31]  Xiaoxu Ding,et al.  Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO 2 /N 2 separation , 2017 .

[32]  F. Ranjbaran,et al.  Inorganic/organic composite ion gel membrane with high mechanical strength and high CO2 separation performance , 2017 .

[33]  Z. Yaakob,et al.  Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview , 2017 .

[34]  M. Rana,et al.  Recent progress of fillers in mixed matrix membranes for CO2 separation: A review , 2017 .

[35]  D. B. Hibbert,et al.  Ionic Liquid Microstrips Impregnated with Magnetic Nanostirrers for Sensitive Gas Sensors. , 2017, ACS applied materials & interfaces.

[36]  S. Mhaisalkar,et al.  Benzyl Alcohol-Treated CH3NH3PbBr3 Nanocrystals Exhibiting High Luminescence, Stability, and Ultralow Amplified Spontaneous Emission Thresholds. , 2017, Nano letters.

[37]  Geoffrey I N Waterhouse,et al.  Recent Progress in Photocatalytic CO2Reduction Over Perovskite Oxides , 2017 .

[38]  M. Kunz,et al.  Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation. , 2017, Nano letters.

[39]  M. Farid,et al.  Supercritical CO2 as heat transfer fluid: A review , 2017 .

[40]  H. Nalwa,et al.  Flexible Graphene-Based Wearable Gas and Chemical Sensors. , 2017, ACS applied materials & interfaces.

[41]  Hee‐Tae Jung,et al.  Amine-Functionalized Graphene/CdS Composite for Photocatalytic Reduction of CO2 , 2017 .

[42]  Jinghua Wu,et al.  CO2 Reduction: From the Electrochemical to Photochemical Approach , 2017, Advanced science.

[43]  S. Dou,et al.  Metal‐Free Carbon Materials for CO2 Electrochemical Reduction , 2017, Advanced materials.

[44]  J. Choi,et al.  Unveiling anomalous CO2-to-N2 selectivity of graphene oxide. , 2017, Physical chemistry chemical physics : PCCP.

[45]  Suljo Linic,et al.  Best Practices in Pursuit of Topics in Heterogeneous Electrocatalysis , 2017 .

[46]  A. Klumpp,et al.  Capacitive CO2 Sensor , 2017 .

[47]  Jiayin Yuan,et al.  Lightweight, Room-Temperature CO2 Gas Sensor Based on Rare-Earth Metal-Free Composites—An Impedance Study , 2017, ACS applied materials & interfaces.

[48]  Licheng Sun,et al.  Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction. , 2017, Chemistry.

[49]  Marca M. Doeff,et al.  A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production , 2017, Science Advances.

[50]  Matthew W. Logan,et al.  Systematic Variation of the Optical Bandgap in Titanium Based Isoreticular Metal-Organic Frameworks for Photocatalytic Reduction of CO2 under Blue Light , 2017 .

[51]  M. Allendorf,et al.  An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. , 2017, Chemical Society reviews.

[52]  Alan X. Wang,et al.  Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing , 2017, Nanotechnology.

[53]  Achim Wixforth,et al.  Fast Surface Acoustic Wave-Based Sensors to Investigate the Kinetics of Gas Uptake in Ultra-Microporous Frameworks. , 2017, ACS sensors.

[54]  C. Wulf,et al.  Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2 , 2017, Topics in Current Chemistry.

[55]  Max C. Lemme,et al.  Graphene-based CO2 sensing and its cross-sensitivity with humidity , 2017 .

[56]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[57]  C. Zhang,et al.  Enriching CO2 Activation Sites on Graphitic Carbon Nitride with Simultaneous Introduction of Electron‐Transfer Promoters for Superior Photocatalytic CO2‐to‐Fuel Conversion , 2017 .

[58]  David W. Greve,et al.  SAW Sensors for Chemical Vapors and Gases , 2017, Sensors.

[59]  M. Holzer,et al.  Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning , 2017, Nature.

[60]  Yichao Lin,et al.  Metal‐Organic Frameworks for Carbon Dioxide Capture and Methane Storage , 2017 .

[61]  Heliang Yao,et al.  Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction , 2017 .

[62]  Xiangping Zhang,et al.  Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation , 2017 .

[63]  Christopher A. Trickett,et al.  Plasmon-Enhanced Photocatalytic CO(2) Conversion within Metal-Organic Frameworks under Visible Light. , 2017, Journal of the American Chemical Society.

[64]  K. Takanabe,et al.  Insights on Measuring and Reporting Heterogeneous Photocatalysis: Efficiency Definitions and Setup Examples , 2017 .

[65]  Jun Liang,et al.  Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. , 2017, Chemical Society reviews.

[66]  Shaojian Lin,et al.  CO2-Responsive polymer materials , 2017 .

[67]  N. Jing,et al.  Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture , 2016, Scientific Reports.

[68]  Jürgen Wöllenstein,et al.  Infrared investigation of CO2 sorption by amine based materials for the development of a NDIR CO2 sensor , 2016 .

[69]  Bai-Ou Guan,et al.  Ultrasensitive plasmonic sensing in air using optical fibre spectral combs , 2016, Nature Communications.

[70]  Seth M. Cohen,et al.  Metal–organic frameworks for membrane-based separations , 2016 .

[71]  Pengwei Huo,et al.  Novel TiO2/C3N4 Photocatalysts for Photocatalytic Reduction of CO2 and for Photocatalytic Decomposition of N2O. , 2016, The journal of physical chemistry. A.

[72]  T. Peng,et al.  Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels , 2016 .

[73]  Wilson A. Smith,et al.  Efficient Electrochemical Production of Syngas from CO2 and H2O by using a Nanostructured Ag/g‐C3N4 Catalyst , 2016 .

[74]  Alan X. Wang,et al.  Near-infrared absorption gas sensing with metal-organic framework on optical fibers , 2016 .

[75]  X. Zhang,et al.  MoS2 Nanosheets Functionalized Composite Mixed Matrix Membrane for Enhanced CO2 Capture via Surface Drop-Coating Method. , 2016, ACS applied materials & interfaces.

[76]  C. V. Singh,et al.  Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals , 2016, Nature Communications.

[77]  Li Liu,et al.  Entrapment of a pyridine derivative within a copper–palladium alloy: a bifunctional catalyst for electrochemical reduction of CO2 to alcohols with excellent selectivity and reusability , 2016 .

[78]  Jiaguo Yu,et al.  Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. , 2016, Chemical Society reviews.

[79]  Yiming Cao,et al.  Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al). , 2016, ACS applied materials & interfaces.

[80]  Nan Li,et al.  CO2-Responsive Polymer-Functionalized Au Nanoparticles for CO2 Sensor. , 2016, Analytical chemistry.

[81]  Yiming Cao,et al.  Effect of MIL-53 on phase inversion and gas separation performance of mixed matrix hollow fiber membranes , 2016 .

[82]  Jinlong Gong,et al.  CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts , 2016 .

[83]  Pamela A. Silver,et al.  Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis , 2016, Science.

[84]  Qian Li,et al.  Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420 nm UV light , 2016 .

[85]  L. Norford,et al.  Chemically functionalized 3D graphene hydrogel for high performance gas sensing , 2016 .

[86]  G. Ozin,et al.  Spatial Separation of Charge Carriers in In2O3-x(OH)y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. , 2016, ACS nano.

[87]  Xiangping Zhang,et al.  Ether-functionalized ionic liquid based composite membranes for carbon dioxide separation , 2016 .

[88]  Aijun Du,et al.  Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. , 2016, Journal of the American Chemical Society.

[89]  J. Ager,et al.  Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. , 2016, Angewandte Chemie.

[90]  Xiaoxiao Yang,et al.  Enhancement of photocatalytic activity in reducing CO2 over CdS/g-C3N4 composite catalysts under UV light irradiation , 2016 .

[91]  S. Qiao,et al.  Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide , 2016, Advanced materials.

[92]  S. Collins,et al.  UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection. , 2016, Optics letters.

[93]  R. Noble,et al.  Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations. , 2016, Accounts of chemical research.

[94]  S. Einloft,et al.  Anticorrosion Protection by Amine–Ionic Liquid Mixtures: Experiments and Simulations , 2016 .

[95]  Rajender S Varma,et al.  Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. , 2016, Chemical reviews.

[96]  Dan Zhao,et al.  Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation , 2016 .

[97]  Shuangquan Zang,et al.  Indirect Z-Scheme BiOI/g-C3N4 Photocatalysts with Enhanced Photoreduction CO2 Activity under Visible Light Irradiation. , 2016, ACS applied materials & interfaces.

[98]  S. Shishatskiy,et al.  Effect of the reactive amino and glycidyl ether terminated polyethylene oxide additives on the gas transport properties of Pebax® bulk and thin film composite membranes , 2016 .

[99]  O. Wolfbeis,et al.  Fiber-Optic Chemical Sensors and Biosensors (2013-2015). , 2016, Analytical chemistry.

[100]  Qinghong Zhang,et al.  Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. , 2016, Chemical communications.

[101]  P. Yang,et al.  Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production , 2016, Science.

[102]  Jianlin Shi,et al.  Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations , 2016 .

[103]  Xiangping Zhang,et al.  Combination of ionic liquids with membrane technology: a new approach for CO2 separation , 2016 .

[104]  Hongjun Lin,et al.  Fabrication and characterization of hollow CdMoO4 coupled g-C3N4 heterojunction with enhanced photocatalytic activity. , 2015, Journal of hazardous materials.

[105]  D. Koziej,et al.  High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO2 , 2015, Proceedings of the National Academy of Sciences.

[106]  Zhengjie Li,et al.  Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture. , 2015, Angewandte Chemie.

[107]  S. Maier,et al.  A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices , 2015, Scientific Reports.

[108]  Marek Napierala,et al.  Study on the Sensing Coating of the Optical Fibre CO2 Sensor , 2015, Sensors.

[109]  Jia‐Xing Lu,et al.  Organically doped palladium: a highly efficient catalyst for electroreduction of CO2 to methanol , 2015 .

[110]  H. Zeng,et al.  All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics , 2015, Advanced materials.

[111]  Dc Kitty Nijmeijer,et al.  MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties , 2015 .

[112]  Maor F. Baruch,et al.  Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. , 2015, Chemical reviews.

[113]  Jiaguo Yu,et al.  Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance , 2015 .

[114]  Can Xue,et al.  Amine-Functionalized ZnO Nanosheets for Efficient CO2 Capture and Photoreduction , 2015, Molecules.

[115]  T. Peng,et al.  Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism , 2015 .

[116]  K. Peinemann,et al.  CO2-selective PEO-PBT (PolyActive™)/graphene oxide composite membranes. , 2015, Chemical communications.

[117]  M. G. Ahunbay,et al.  Sod-ZMOF/Matrimid® mixed matrix membranes for CO2 separation , 2015 .

[118]  Jinhua Ye,et al.  Electrostatic Self‐Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal–Organic Framework for Enhanced Photocatalytic CO2 Reduction , 2015 .

[119]  D. Mecerreyes,et al.  Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges , 2015 .

[120]  Yi Yu,et al.  Hybrid bioinorganic approach to solar-to-chemical conversion , 2015, Proceedings of the National Academy of Sciences.

[121]  M. Elimelech,et al.  Environmental applications of graphene-based nanomaterials. , 2015, Chemical Society reviews.

[122]  Wanqin Jin,et al.  Graphene-based membranes. , 2015, Chemical Society reviews.

[123]  Lan Yuan,et al.  Photocatalytic conversion of CO2 into value-added and renewable fuels , 2015 .

[124]  Svetlana Mintova,et al.  Gas sensing using porous materials for automotive applications. , 2015, Chemical Society reviews.

[125]  C. V. Singh,et al.  Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3-x)(OH)y. , 2015, Physical chemistry chemical physics : PCCP.

[126]  Horst Kisch,et al.  Best Practice in Photocatalysis: Comparing Rates or Apparent Quantum Yields? , 2015, The journal of physical chemistry letters.

[127]  Markus Niederberger,et al.  When Nanoparticles Meet Poly(Ionic Liquid)s: Chemoresistive CO2 Sensing at Room Temperature , 2015 .

[128]  S. Bhansali,et al.  Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. , 2015, Chemical reviews.

[129]  Jie Zheng,et al.  Fundamentals of double network hydrogels. , 2015, Journal of materials chemistry. B.

[130]  Jiaguo Yu,et al.  Amine-Functionalized Titanate Nanosheet-Assembled Yolk@Shell Microspheres for Efficient Cocatalyst-Free Visible-Light Photocatalytic CO2 Reduction. , 2015, ACS applied materials & interfaces.

[131]  Yu Han,et al.  Microporous carbonaceous adsorbents for CO2 separation via selective adsorption , 2015 .

[132]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[133]  Jianlin Shi,et al.  Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light , 2015 .

[134]  S. Chai,et al.  Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. , 2015, Chemical communications.

[135]  Maohong Fan,et al.  New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. , 2015, Environmental science & technology.

[136]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[137]  Joong Tark Han,et al.  3D Printing of Reduced Graphene Oxide Nanowires , 2015, Advanced materials.

[138]  E. Giannelis,et al.  Sponges with covalently tethered amines for high-efficiency carbon capture , 2014, Nature Communications.

[139]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[140]  Geoffrey A. Ozin,et al.  The Rational Design of a Single‐Component Photocatalyst for Gas‐Phase CO2 Reduction Using Both UV and Visible Light , 2014, Advanced science.

[141]  Erkki Levänen,et al.  Applications of supercritical carbon dioxide in materials processing and synthesis , 2014 .

[142]  P. K. Roy,et al.  Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. , 2014, Nano letters.

[143]  Teppei Yamada,et al.  Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior. , 2014, Angewandte Chemie.

[144]  Krista S. Walton,et al.  Water stability and adsorption in metal-organic frameworks. , 2014, Chemical reviews.

[145]  Z. Zou,et al.  Polymeric g-C3N4 Coupled with NaNbO3 Nanowires toward Enhanced Photocatalytic Reduction of CO2 into Renewable Fuel , 2014 .

[146]  Y. Kamakura,et al.  Electron mobility calculation for graphene on substrates , 2014 .

[147]  K. Schanze,et al.  Best practices for reporting on heterogeneous photocatalysis. , 2014, ACS applied materials & interfaces.

[148]  Zhenyi Zhang,et al.  Efficient CO2 capture and photoreduction by amine-functionalized TiO2. , 2014, Chemistry.

[149]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[150]  Yulong Ying,et al.  Graphene oxide nanosheet: an emerging star material for novel separation membranes , 2014 .

[151]  P. Král,et al.  Robust carbon dioxide reduction on molybdenum disulphide edges , 2014, Nature Communications.

[152]  R. Pohle,et al.  Analyte detection with Cu-BTC metal-organic framework thin films by means of mass-sensitive and work-function-based readout. , 2014, Analytical chemistry.

[153]  Jun Jiang,et al.  Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions , 2014, Advanced materials.

[154]  Yong Zhou,et al.  Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State‐of‐the‐Art Accomplishment, Challenges, and Prospects , 2014, Advanced materials.

[155]  Sibo Wang,et al.  Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. , 2014, Physical chemistry chemical physics : PCCP.

[156]  J. Silvestre-Albero,et al.  Micro/Mesoporous Activated Carbons Derived from Polyaniline: Promising Candidates for CO2 Adsorption , 2014 .

[157]  F. Kapteijn,et al.  Unveiling the mechanism of selective gate-driven diffusion of CO2 over N2 in MFU-4 metal-organic framework. , 2014, Dalton transactions.

[158]  T. Ohno,et al.  Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light , 2014 .

[159]  Lionel Nicole,et al.  Hybrid materials science: a promised land for the integrative design of multifunctional materials. , 2014, Nanoscale.

[160]  J. F. Stoddart,et al.  A metal-organic framework-based material for electrochemical sensing of carbon dioxide. , 2014, Journal of the American Chemical Society.

[161]  Jiaguo Yu,et al.  Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts. , 2014, Physical chemistry chemical physics : PCCP.

[162]  Say Chye Joachim Loo,et al.  Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts , 2014 .

[163]  D. Korelskiy,et al.  A uniformly oriented MFI membrane for improved CO₂ separation. , 2014, Angewandte Chemie.

[164]  Baoxia Mi,et al.  Graphene Oxide Membranes for Ionic and Molecular Sieving , 2014, Science.

[165]  Michele Aresta,et al.  Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. , 2014, Chemical reviews.

[166]  Ying Ma,et al.  Detection of dissolved CO(2) based on the aggregation of gold nanoparticles. , 2014, Analytical chemistry.

[167]  Zhigang Lei,et al.  Gas solubility in ionic liquids. , 2014, Chemical reviews.

[168]  A. Mohamed,et al.  Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide , 2013, Nanoscale Research Letters.

[169]  S. Kaliaguine,et al.  Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation , 2013 .

[170]  A. Russell,et al.  Review of recent advances in carbon dioxide separation and capture , 2013 .

[171]  Jae-Young Choi,et al.  Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes , 2013, Science.

[172]  Wenguang Tu,et al.  Versatile Graphene‐Promoting Photocatalytic Performance of Semiconductors: Basic Principles, Synthesis, Solar Energy Conversion, and Environmental Applications , 2013 .

[173]  T. Peng,et al.  Recent advances in the photocatalytic CO2 reduction over semiconductors , 2013 .

[174]  Huanting Wang,et al.  ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel , 2013 .

[175]  Lujie Cao,et al.  A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. , 2013, Chemical communications.

[176]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[177]  Heikki Tenhu,et al.  Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. , 2013, ChemSusChem.

[178]  Yihua Gao,et al.  Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure , 2013, Scientific Reports.

[179]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[180]  M. Antonietti,et al.  Poly(ionic liquid)s: An update , 2013 .

[181]  Ryan P. Lively,et al.  Tunable CO2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks , 2013 .

[182]  Wenguang Tu,et al.  An In Situ Simultaneous Reduction‐Hydrolysis Technique for Fabrication of TiO2‐Graphene 2D Sandwich‐Like Hybrid Nanosheets: Graphene‐Promoted Selectivity of Photocatalytic‐Driven Hydrogenation and Coupling of CO2 into Methane and Ethane , 2013 .

[183]  V. Chen,et al.  Challenges and opportunities for mixed-matrix membranes for gas separation , 2013 .

[184]  Y. Choa,et al.  Hybridized conducting polymer chemiresistive nano-sensors , 2013 .

[185]  M. Hirscher,et al.  MFU‐4 – A Metal‐Organic Framework for Highly Effective H2/D2 Separation , 2013, Advanced materials.

[186]  Miao Zhu,et al.  Selective ion penetration of graphene oxide membranes. , 2013, ACS nano.

[187]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[188]  Youshen Wu,et al.  Monodispersed or narrow-dispersed melamine-formaldehyde resin polymer colloidal spheres: preparation, size-control, modification, bioconjugation and particle formation mechanism. , 2013, Journal of materials chemistry. B.

[189]  Zhonglin Luo,et al.  CO2 capture in poly(ionic liquid) membranes: atomistic insight into the role of anions. , 2013, Physical chemistry chemical physics : PCCP.

[190]  Yu‐Chuan Lin,et al.  Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. , 2013, Nanoscale.

[191]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[192]  Ashraf Uddin,et al.  Organic - Inorganic Hybrid Solar Cells: A Comparative Review , 2012 .

[193]  Kwan Kyu Park,et al.  Functionalization layers for CO2 sensing using capacitive micromachined ultrasonic transducers , 2012 .

[194]  M. Jaroniec,et al.  Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. , 2012, Journal of the American Chemical Society.

[195]  A. Galarneau,et al.  Ionic Liquid Mediated Sol-Gel Synthesis in the Presence of Water or Formic Acid: Which Synthesis for Which Material? , 2012 .

[196]  Vitalie Stavila,et al.  Ultrasensitive humidity detection using metal-organic framework-coated microsensors. , 2012, Analytical chemistry.

[197]  Hui‐Ming Cheng,et al.  The reduction of graphene oxide , 2012 .

[198]  Hongwei Ma,et al.  Poly(ionic liquid)-wrapped single-walled carbon nanotubes for sub-ppb detection of CO2. , 2012, Chemical communications.

[199]  Mark C Hersam,et al.  Effect of Dimensionality on the Photocatalytic Behavior of Carbon-Titania Nanosheet Composites: Charge Transfer at Nanomaterial Interfaces. , 2012, The journal of physical chemistry letters.

[200]  K. Matyjaszewski,et al.  Design and preparation of porous polymers. , 2012, Chemical reviews.

[201]  Ali Abas Wani,et al.  The use of carbon dioxide in the processing and packaging of milk and dairy products: A review , 2012 .

[202]  M. A. Bustam,et al.  Solubility of CO2 in pyridinium based ionic liquids , 2012 .

[203]  Sanghoon Ko,et al.  Carbon dioxide sensors for intelligent food packaging applications , 2012 .

[204]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[205]  Kwan Kyu Park,et al.  Mesoporous thin-film on highly-sensitive resonant chemical sensor for relative humidity and CO2 detection. , 2012, Analytical chemistry.

[206]  J. Barber,et al.  Recent advances in hybrid photocatalysts for solar fuel production , 2012 .

[207]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[208]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[209]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[210]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[211]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[212]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[213]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[214]  Cheryl Surman,et al.  Materials and transducers toward selective wireless gas sensing. , 2011, Chemical reviews.

[215]  Zhongbiao Wu,et al.  Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts , 2011 .

[216]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[217]  Antonio B. Fuertes,et al.  N‐Doped Polypyrrole‐Based Porous Carbons for CO2 Capture , 2011 .

[218]  Mark C Hersam,et al.  Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. , 2011, Nano letters.

[219]  O. Ishitani,et al.  Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂. , 2011, ACS applied materials & interfaces.

[220]  SonBinh T. Nguyen,et al.  Porous organic polymers in catalysis: Opportunities and challenges , 2011 .

[221]  R. Noble,et al.  Designing the Next Generation of Chemical Separation Membranes , 2011, Science.

[222]  M. Antonietti,et al.  Poly(ionic liquid)s: Polymers expanding classical property profiles , 2011 .

[223]  M. Popall,et al.  Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. , 2011, Chemical Society reviews.

[224]  Peter Styring,et al.  High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid) , 2010 .

[225]  Otto S. Wolfbeis,et al.  Upconverting nanoparticle based optical sensor for carbon dioxide , 2010 .

[226]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[227]  Jian Ping Gong,et al.  Why are double network hydrogels so tough , 2010 .

[228]  Seth M. Cohen Modifying MOFs: new chemistry, new materials , 2010 .

[229]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[230]  G. Mul,et al.  Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? , 2010, Journal of the American Chemical Society.

[231]  Guang Lu,et al.  Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. , 2010, Journal of the American Chemical Society.

[232]  T. Maschmeyer,et al.  Catalytic aspects of light-induced hydrogen generation in water with TiO2 and other photocatalysts: a simple and practical way towards a normalization? , 2010, Angewandte Chemie.

[233]  Wen‐Cui Li,et al.  Rapid Synthesis of Nitrogen‐Doped Porous Carbon Monolith for CO2 Capture , 2010, Advanced materials.

[234]  Ivo F. J. Vankelecom,et al.  Membrane-based technologies for biogas separations. , 2010, Chemical Society reviews.

[235]  Uma Sampathkumaran,et al.  Fluorescent-dye-doped sol-gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations. , 2010, Analytical chemistry.

[236]  M. Nardelli,et al.  First-principles analysis of electron-phonon interactions in graphene , 2009, 0912.0562.

[237]  N. Bârsan,et al.  Rare earth oxycarbonates as a material class for chemoresistive CO2 gas sensors , 2010 .

[238]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[239]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[240]  Claude Mirodatos,et al.  Natural gas treating by selective adsorption: Material science and chemical engineering interplay , 2009 .

[241]  A. Gulino,et al.  Very fast CO2 response and hydrophobic properties of novel poly(ionic liquid)s , 2009 .

[242]  Junhong Chen,et al.  Reduced graphene oxide for room-temperature gas sensors , 2009, Nanotechnology.

[243]  Nicolae Barsan,et al.  Neodymium Dioxide Carbonate as a Sensing Layer for Chemoresistive CO2 Sensing , 2009 .

[244]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[245]  S. Kaskel,et al.  A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. , 2009, Dalton transactions.

[246]  Z. Zou,et al.  Photodegradation performance of g-C3N4 fabricated by directly heating melamine. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[247]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[248]  Xiaoxing Wang,et al.  Infrared Study of CO2 Sorption over ?Molecular Basket? Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve , 2009 .

[249]  Randall Q. Snurr,et al.  Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification , 2009 .

[250]  K. Vogiatzis,et al.  Ab initio study of the interactions between CO(2) and N-containing organic heterocycles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[251]  K. Hata,et al.  Colloidal interaction in ionic liquids: effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[252]  N. Hüsing,et al.  Inorganic–Organic Hybrid Porous Materials , 2009 .

[253]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[254]  D. Olson,et al.  Zeolitic imidazolate frameworks for kinetic separation of propane and propene. , 2009, Journal of the American Chemical Society.

[255]  H. Hofbauer,et al.  H2 rich syngas by selective CO2 removal from biomass gasification in a dual fluidized bed system — Process modelling approach , 2008 .

[256]  Amornvadee Veawab,et al.  Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process , 2008 .

[257]  A. Car,et al.  Tailor‐made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation , 2008 .

[258]  L. Robeson,et al.  The upper bound revisited , 2008 .

[259]  Rajesh Rajamani,et al.  Carbon nanotube-coated surface acoustic wave sensor for carbon dioxide sensing , 2008 .

[260]  Ingo Klimant,et al.  Optical Carbon Dioxide Sensors Based on Silicone-Encapsulated Room-Temperature Ionic Liquids , 2007 .

[261]  Eugeny Y. Kenig,et al.  CO2‐Alkanolamine Reaction Kinetics: A Review of Recent Studies , 2007 .

[262]  R. Baltus,et al.  Experimental Measurement of the Solubility and Diffusivity of CO2 in Room-Temperature Ionic Liquids Using a Transient Thin-Liquid-Film Method , 2007 .

[263]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[264]  L. Brinson,et al.  Polymer nanocomposites: A small part of the story , 2007 .

[265]  Eric Favre,et al.  Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? , 2007 .

[266]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[267]  Kadriye Ertekin,et al.  Emission-based optical carbon dioxide sensing with HPTS in green chemistry reagents: room-temperature ionic liquids , 2006, Analytical and bioanalytical chemistry.

[268]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[269]  M. Antonietti,et al.  Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. , 2006, Angewandte Chemie.

[270]  Zhongyi Jiang,et al.  Hybrid Organic−Inorganic Membrane: Solving the Tradeoff between Permeability and Selectivity , 2005 .

[271]  Jianbin Tang,et al.  Poly(ionic liquid)s as new materials for CO2 absorption , 2005 .

[272]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[273]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[274]  Vikram Joshi,et al.  Nanoelectronic Carbon Dioxide Sensors , 2004 .

[275]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[276]  A. Durán,et al.  Hybrid Organic/Inorganic Sol-Gel Materials for Proton Conducting Membranes , 2004 .

[277]  Daisuke Nagai,et al.  A Novel Construction of a Reversible Fixation−Release System of Carbon Dioxide by Amidines and Their Polymers , 2004 .

[278]  Yasuhiko Arai,et al.  Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye , 2003 .

[279]  An optical sensor for CO2 using thymol blue and europium(III) complex composite film , 2003 .

[280]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[281]  E. Boyle,et al.  The global carbon cycle: a test of our knowledge of earth as a system. , 2000, Science.

[282]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[283]  Brian J. Briscoe,et al.  Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures , 2000 .

[284]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[285]  Andrew B. Bocarsly,et al.  A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential , 1994 .

[286]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[287]  Akira Murata,et al.  PRODUCTION OF METHANE AND ETHYLENE IN ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE AT COPPER ELECTRODE IN AQUEOUS HYDROGENCARBONATE SOLUTION , 1986 .

[288]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[289]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[290]  M. Allendorf,et al.  Reports of Meetings , 1970 .

[291]  J. Severinghaus,et al.  Electrodes for blood pO2 and pCO2 determination. , 1958, Journal of applied physiology.