Computational error-analysis of a discontinuous Galerkin discretization applied to large-eddy simulation of homogeneous turbulence

A computational error-assessment of large-eddy simulation (LES) in combination with a discontinuous Galerkin finite element method is presented for homogeneous, isotropic, decaying turbulence. The error-landscape database approach is used to quantify the total simulation error that arises from the use of the Smagorinsky eddy-viscosity model in combination with the Galerkin discretization. We adopt a modified HLLC flux, allowing an explicit control over the dissipative component of the numerical flux. The optimal dependence of the Smagorinsky parameter on the spatial resolution is determined for second and third order accurate Galerkin methods. In particular, the role of the numerical dissipation relative to the contribution from the Smagorinsky dissipation is investigated. We observed an ‘exchange of dissipation’ principle in the sense that an increased numerical dissipation implied a reduction in the optimal Smagorinsky parameter. The predictions based on Galerkin discretization with fully stabilized HLLC flux were found to be less accurate than when a central discretization with (mainly) Smagorinsky dissipation was used. This was observed for both the second and third order Galerkin discretization, suggesting to emphasize central discretization of the convective nonlinearity and stabilization that mimics eddy-viscosity as sub-filter dissipation.

[1]  Eitan Tadmor,et al.  Strong Stability-Preserving High-Order Time Discretization , 2001 .

[2]  Bernardo Cockburn,et al.  An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method Applied to Linear and Nonlinear Diffusion Problems , 2005, J. Sci. Comput..

[3]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[4]  Johan Hoffman,et al.  A new approach to computational turbulence modeling , 2006 .

[5]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[6]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[7]  Samuel Scott Collis,et al.  The Local Variational Multiscale Method for Turbulence Simulation. , 2005 .

[8]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[9]  J. V. D. Vegt,et al.  A space--time discontinuous Galerkin method for the time-dependent Oseen equations , 2008 .

[10]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[11]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[12]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[13]  Lagrangian dynamics of commutator errors in large-eddy simulation , 2005 .

[14]  B. Geurts Elements of direct and large-eddy simulation , 2003 .

[15]  P. Moin,et al.  The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .

[16]  Jaap J. W. van der Vegt,et al.  Discontinuous Galerkin Method for Linear Free-Surface Gravity Waves , 2005, J. Sci. Comput..

[17]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[18]  J. Guermond,et al.  On the construction of suitable solutions to the Navier-Stokes equations and questions regarding the definition of large eddy simulation , 2005 .

[19]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[20]  Johan Meyers,et al.  A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model , 2007, J. Comput. Phys..

[21]  B. Geurts,et al.  A framework for predicting accuracy limitations in large-eddy simulation , 2002 .

[22]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[23]  B. Geurts,et al.  Mixing in manipulated turbulence , 2006, physics/0601164.

[24]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[25]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[26]  J. Deardorff,et al.  On the magnitude of the subgrid scale eddy coefficient , 1971 .

[27]  C. Fureby,et al.  Mathematical and Physical Constraints on Large-Eddy Simulations , 1997 .

[28]  M. N. Spijker,et al.  An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..

[29]  Andreas Muschinski,et al.  A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES , 1996, Journal of Fluid Mechanics.

[30]  Gabriel N. Gatica,et al.  A Local Discontinuous Galerkin Method for Nonlinear Diffusion Problems with Mixed Boundary Conditions , 2004, SIAM J. Sci. Comput..

[31]  B. Geurts,et al.  Large-eddy simulation of the turbulent mixing layer , 1997, Journal of Fluid Mechanics.

[32]  Bernardus J. Geurts,et al.  Commutator errors in the filtering approach to large-eddy simulation , 2005 .

[33]  F. Grinstein,et al.  Recent Progress on MILES for High Reynolds Number Flows , 2002 .

[34]  B. Geurts,et al.  Successive inverse polynomial interpolation to optimize Smagorinsky's model for large-eddy simulation of homogeneous turbulence , 2006 .

[35]  M. N. Spijker,et al.  Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..

[36]  H. van der Ven,et al.  Discontinuous Galerkin Finite Element Method with Anisotropic Local Grid Refinement for Inviscid Compressible Flows , 1998 .

[37]  B. Geurts,et al.  Nonlocal modulation of the energy cascade in broadband-forced turbulence. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Johan Meyers,et al.  Optimality of the dynamic procedure for large-eddy simulations , 2005 .

[39]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[40]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[41]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[42]  R. LeVeque Numerical methods for conservation laws , 1990 .

[43]  Fernando F. Grinstein,et al.  On MILES based on flux‐limiting algorithms , 2005 .

[44]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[45]  L. Margolin,et al.  A rationale for implicit turbulence modelling , 2001 .

[46]  L. Margolin,et al.  The design and construction of implicit LES models , 2005 .

[47]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[48]  A. W. Vreman,et al.  Direct and Large-Eddy Simulation of the Compressible Turbulent Mixing Layer , 1995 .

[49]  Bernardus J. Geurts,et al.  Interacting errors in large-eddy simulation: a review of recent developments , 2006 .

[50]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[51]  Ugo Piomelli,et al.  Large-eddy simulation: achievements and challenges , 1999 .

[52]  Bernardus J. Geurts,et al.  A priori tests of large eddy simulation of the compressible plane mixing layer , 1995 .

[53]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[54]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[55]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[56]  U. Schumann Direct and large eddy simulation of turbulence summary of the state-of-the-art 1991 , 1991 .

[57]  P. Moin,et al.  Numerical Simulation of Turbulent Flows , 1984 .

[58]  Alexandre Favre,et al.  Turbulence: Space‐time statistical properties and behavior in supersonic flows , 1983 .

[59]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[60]  N. Adams,et al.  Implicit subgrid-scale modeling by adaptive deconvolution , 2004 .

[61]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[62]  Bernardus J. Geurts,et al.  A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques , 2007 .

[63]  B. Geurts,et al.  Database-analysis of errors in Large-Eddy Simulation , 2003 .

[64]  S. Ghosal Mathematical and Physical Constraints on Large-Eddy Simulation of Turbulence , 1999 .