A numerical evaluation of preprocessing and ILU-type preconditioners for the solution of unsymmetric sparse linear systems using iterative methods

Recent advances in multilevel LU factorizations and novel preprocessing techniques have led to an extremely large number of possibilities for preconditioning sparse, unsymmetric linear systems for solving with iterative methods. However, not all combinations work well for all systems, so making the right choices is essential for obtaining an efficient solver. The numerical results for 256 matrices presented in this article give an indication of which approaches are suitable for which matrices (based on different criteria, such as total computation time or fill-in) and of the differences between the methods.

[1]  Christian Wieners,et al.  Nonlinear solution methods for infinitesimal perfect plasticity , 2007 .

[2]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[3]  Edmond Chow,et al.  Crout Versions of ILU for General Sparse Matrices , 2003, SIAM J. Sci. Comput..

[4]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[5]  Jan Mayer ILUCP: a Crout ILU preconditioner with pivoting , 2005, Numer. Linear Algebra Appl..

[6]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[7]  Jan Mayer,et al.  A multilevel Crout ILU preconditioner with pivoting and row permutation , 2007, Numer. Linear Algebra Appl..

[8]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..

[9]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[10]  A. Neumaier,et al.  A NEW PIVOTING STRATEGY FOR GAUSSIAN ELIMINATION , 1996 .

[11]  Yousef Saad,et al.  Multilevel Preconditioners Constructed From Inverse-Based ILUs , 2005, SIAM J. Sci. Comput..

[12]  Wolfgang Fichtner,et al.  Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .

[13]  Iain S. Duff,et al.  Strategies for Scaling and Pivoting for Sparse Symmetric Indefinite Problems , 2005, SIAM J. Matrix Anal. Appl..

[14]  M. Tismenetsky,et al.  A new preconditioning technique for solving large sparse linear systems , 1991 .

[15]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[16]  Nicholas I. M. Gould,et al.  A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations , 2007, TOMS.

[17]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[18]  Jan Mayer Symmetric Permutations for I-matrices to Delay and Avoid Small Pivots During Factorization , 2008, SIAM J. Sci. Comput..

[19]  Matthias Bollhöfer,et al.  A Robust and Efficient ILU that Incorporates the Growth of the Inverse Triangular Factors , 2003, SIAM J. Sci. Comput..

[20]  Matthias Bollhöfer,et al.  A robust ILU with pivoting based on monitoring the growth of the inverse factors , 2001 .

[21]  Yousef Saad,et al.  Multilevel ILU With Reorderings for Diagonal Dominance , 2005, SIAM J. Sci. Comput..

[22]  Olaf Schenk,et al.  Weighted Matchings for Preconditioning Symmetric Indefinite Linear Systems , 2006, SIAM J. Sci. Comput..

[23]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[24]  Iain S. Duff,et al.  On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..

[25]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[26]  Jan Mayer,et al.  Alternative Weighted Dropping Strategies for ILUTP , 2005, SIAM J. Sci. Comput..

[27]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..