THE FAR-INFRARED–RADIO CORRELATION AT HIGH REDSHIFTS: PHYSICAL CONSIDERATIONS AND PROSPECTS FOR THE SQUARE KILOMETER ARRAY

I present a predictive analysis for the behavior of the far-infrared (FIR)–radio correlation as a function of redshift in light of the deep radio continuum surveys which may become possible using the Square Kilometer Array (SKA). To keep a fixed ratio between the FIR and predominantly non-thermal radio continuum emission of a normal star-forming galaxy, whose cosmic-ray electrons typically lose most of their energy to synchrotron radiation and inverse Compton (IC) scattering, requires a nearly constant ratio between galaxy magnetic field and radiation field energy densities. While the additional term of IC losses off of the cosmic microwave background (CMB) is negligible in the local universe, the rapid increase in the strength of the CMB energy density (i.e., ∼(1 + z)4) suggests that evolution in the FIR–radio correlation should occur with infrared (IR; 8–1000 μm)/radio ratios increasing with redshift. This signature should be especially apparent once beyond z ∼ 3 where the magnetic field of a normal star-forming galaxy must be ∼50 μG to save the FIR–radio correlation. At present, observations do not show such a trend with redshift; z ∼ 6 radio-quiet quasars appear to lie on the local FIR–radio correlation while a sample of z ∼ 4.4 and z ∼ 2.2 submillimeter galaxies exhibit ratios that are a factor of ∼2.5 below the canonical value. I also derive a 5σ point-source sensitivity goal of ≈20 nJy (i.e., σrms ∼ 4 nJy) requiring that the SKA specified sensitivity be Aeff/Tsys ≈ 15, 000 m2 K−1; achieving this sensitivity should enable the detection of galaxies forming stars at a rate of ≳25 M☉ yr−1, such as typical luminous infrared galaxies (i.e., LIR ≳ 1011L☉), at all redshifts if present. By taking advantage of the fact that the non-thermal component of a galaxy's radio continuum emission will be quickly suppressed by IC losses off of the CMB, leaving only the thermal (free–free) component, I argue that deep radio continuum surveys at frequencies ≳10 GHz may prove to be the best probe for characterizing the high-z star formation history of the universe unbiased by dust.

[1]  M. Mori,et al.  The escape of ionizing photons from supernova-dominated primordial galaxies , 2009, 0906.1658.

[2]  D. Elbaz,et al.  A CO EMISSION LINE FROM THE OPTICAL AND NEAR-IR UNDETECTED SUBMILLIMETER GALAXY GN10 , 2009, 0903.3046.

[3]  B. Draine Interstellar Dust Models and Evolutionary Implications , 2009, 0903.1658.

[4]  NOAO,et al.  A submillimetre galaxy at z = 4.76 in the LABOCA survey of the Extended Chandra Deep Field-South , 2009, 0902.4464.

[5]  J. Schaye,et al.  Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations , 2009, 0902.1535.

[6]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[7]  A. Nica Non-crossing linked partitions, the partial order << on NC(n), and the S-transform , 2009, 0901.1175.

[8]  G. Helou,et al.  ENVIRONMENTAL EFFECTS IN CLUSTERS: MODIFIED FAR-INFRARED–RADIO RELATIONS WITHIN VIRGO CLUSTER GALAXIES , 2008, 0812.2922.

[9]  C. Dickinson,et al.  A refined model for spinning dust radiation , 2008, 0812.2904.

[10]  D. Elbaz,et al.  TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS , 2008, 0810.3108.

[11]  Sensitive Continuum Surveys with the SKA: Goals and Challenges , 2009 .

[12]  M. Dickinson,et al.  BALANCING THE ENERGY BUDGET BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT INFRARED LUMINOUS GALAXIES , 2008, 0812.2927.

[13]  Marita Krause,et al.  Evolution of magnetic fields in galaxies and future observational tests with the Square Kilometre Array , 2008, 0810.3114.

[14]  Frazer N. Owen,et al.  THE DEEP SWIRE FIELD. I. 20 cm CONTINUUM RADIO OBSERVATIONS: A CROWDED SKY , 2008, 0809.0314.

[15]  C. Carilli,et al.  Star Formation Rates in Lyman Break Galaxies: Radio Stacking of LBGs in the COSMOS Field and the Sub-μJy Radio Source Population , 2008, 0808.2391.

[16]  S. Lilly,et al.  Strong magnetic fields in normal galaxies at high redshift , 2008, Nature.

[17]  N. Hathi,et al.  “GiGa”: the Billion Galaxy HI Survey—Tracing Galaxy Assembly from Reionization to the Present , 2008, 0806.2001.

[18]  Peter Capak,et al.  Spectroscopic Confirmation of an Extreme Starburst at Redshift 4.547 , 2008, 0806.0657.

[19]  A. Strong,et al.  Inverse Compton Origin of the Hard X-Ray and Soft Gamma-Ray Emission from the Galactic Ridge , 2008, 0804.1774.

[20]  E. Quataert,et al.  Extragalactic Zeeman Detections in OH Megamasers , 2008, 0803.1832.

[21]  Garth D. Illingworth,et al.  z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.

[22]  G. Helou,et al.  Connecting Far-Infrared and Radio Morphologies of Disk Galaxies: Cosmic-Ray Electron Diffusion After Star Formation Episodes , 2008, 0801.4768.

[23]  R. Chary The Stellar Initial Mass Function at the Epoch of Reionization , 2007, 0712.1498.

[24]  Puerto Rico,et al.  THE EVOLUTION OF GALAXIES THROUGH THE NEUTRAL HYDROGEN WINDOW , 2008 .

[25]  D. Higdon,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 11/12/01 A GLOBAL PROBE OF COSMIC MAGNETIC FIELDS TO HIGH REDSHIFTS , 2022 .

[26]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[27]  E. Dwek,et al.  The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251 , 2007, 0705.3799.

[28]  Xiaohui Fan,et al.  Millimeter and Radio Observations of z ∼ 6 Quasars , 2007, The Astronomical Journal.

[29]  R. Genzel,et al.  A Mid-Infrared Spectroscopic Study of Submillimeter Galaxies: Luminous Starbursts at High Redshift , 2007, astro-ph/0701816.

[30]  Caltech,et al.  The VLA-COSMOS Survey. II. Source Catalog of the Large Project , 2006, astro-ph/0612314.

[31]  E. Churazov,et al.  Metal mixing by buoyant bubbles in galaxy clusters , 2006, astro-ph/0611531.

[32]  Attila Kovács SHARC-2 350 micron observations of distant submillimeter-selected galaxies and techniques for the optimal analysis and observing of weak signals , 2006 .

[33]  I. Smail,et al.  SHARC-2 350 μm Observations of Distant Submillimeter-selected Galaxies , 2006, The Astrophysical Journal.

[34]  C. Carilli,et al.  350 μm dust emission from high-redshift quasars , 2006, astro-ph/0603121.

[35]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[36]  L. Staveley-Smith,et al.  A multiresolution analysis of the radio-FIR correlation in the Large Magellanic Cloud , 2006, astro-ph/0602380.

[37]  Xiaohui Fan,et al.  Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.

[38]  E. Quataert,et al.  Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation , 2006, astro-ph/0601626.

[39]  L. Kewley,et al.  An Initial Look at the Far-Infrared-Radio Correlation within Nearby Star-forming Galaxies Using the Spitzer Space Telescope , 2005, astro-ph/0510227.

[40]  C. Leitherer,et al.  Warm Dust and Spatially Variable PAH Emission in the Dwarf Starburst Galaxy NCG 1705 , 2006 .

[41]  D. Padgett,et al.  Spitzer 70 and 160 μm Observations of the Extragalactic First Look Survey , 2005, astro-ph/0509649.

[42]  Donald P. Cox,et al.  THE THREE-PHASE INTERSTELLAR MEDIUM REVISITED , 2005 .

[43]  C. Leitherer,et al.  Spitzer Observations of the Supergiant Shell Region in IC 2574 , 2005, astro-ph/0508025.

[44]  M. Krause,et al.  Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations , 2005, astro-ph/0507367.

[45]  W. Brandt,et al.  The X-Ray Spectral Properties of SCUBA Galaxies , 2005, astro-ph/0506608.

[46]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[47]  W. Forman,et al.  Impact of stochastic gas motions on galaxy cluster abundance profiles , 2005 .

[48]  M. Franx,et al.  Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field , 2004, astro-ph/0406562.

[49]  F. Walter,et al.  Radio Continuum Imaging of Far-Infrared-Luminous QSOs at z > 6 , 2004, astro-ph/0406279.

[50]  The Far- and Mid-Infrared/Radio Correlations in the Spitzer Extragalactic First Look Survey , 2004, astro-ph/0406030.

[51]  G. Helou,et al.  Nascent Starbursts in Synchrotron-deficient Galaxies with Hot Dust , 2003 .

[52]  D. Lemke,et al.  The spiral galaxy M33 mapped in the FIR by ISOPHOT. A spatially resolved study of the warm and cold dust. , 2003, astro-ph/0306558.

[53]  Xiaohui Fan,et al.  Dust emission from the most distant quasars , 2003, astro-ph/0305116.

[54]  G. Zamorani,et al.  The radio–mid‐infrared correlation and the contribution of 15‐μm galaxies to the 1.4‐GHz source counts , 2003, astro-ph/0303116.

[55]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[56]  THE ASTROPHYSICAL JOURNAL: ACCEPTED ON DECEMBER 5TH, 2002 Preprint typeset using L ATEX style emulateapj v. 26/01/00 ESTIMATING STAR FORMATION RATES FROM INFRARED AND RADIO LUMINOSITIES: THE ORIGIN OF THE RADIO–INFRARED CORRELATION , 2002 .

[57]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[58]  R. Taillet,et al.  New results on source and diffusion spectral features of Galactic cosmic rays: I- B/C ratio , 2002, astro-ph/0206286.

[59]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2002, astro-ph/0205085.

[60]  David Elbaz,et al.  The Bulk of the Cosmic Infrared Background Resolved by ISOCAM , 2002, astro-ph/0201328.

[61]  J. Ormes,et al.  Secondary Antiprotons and Propagation of Cosmic Rays in the Galaxy and Heliosphere , 2001, astro-ph/0106567.

[62]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[63]  M. Garrett,et al.  The FIR/Radio correlation of high redshift galaxies in the region of the HDF-N , 2001, astro-ph/0108313.

[64]  V. Narayanan,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[65]  S. C. Madden,et al.  METALLICITY EFFECTS ON THE ISM OF DWARF GALAXIES - THE PROMISE OF THE HERSCHEL SPACE OBSERVATORY , 2001 .

[66]  K. Ferrière The interstellar environment of our galaxy , 2001, astro-ph/0106359.

[67]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[68]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[69]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[70]  Frank C. Jones,et al.  The Modified Weighted Slab Technique: Models and Results , 2000, astro-ph/0007293.

[71]  E. Dorfi Cosmic Ray Production Rates in Supernova Remnants , 2000 .

[72]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[73]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[74]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[75]  M. Valle,et al.  On the evolution of the cosmic supernova rates , 1998, astro-ph/9803284.

[76]  A. Lazarian,et al.  Electric Dipole Radiation from Spinning Dust Grains , 1998, astro-ph/9802239.

[77]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[78]  D. Sokoloff,et al.  Galactic Magnetism: Recent developments and perspectives , 1996 .

[79]  R. Cen,et al.  The Protogalactic Origin for Cosmic Magnetic Fields , 1996, astro-ph/9607141.

[80]  G. Helou,et al.  The Spatial Variation of the Infrared-to-Radio Ratio in Spiral Galaxies , 1995 .

[81]  M. Dahlem,et al.  Star formation activity in spiral galaxy disks and the properties of radio halos: Observational evidence for a direct dependence , 1995 .

[82]  G. Helou,et al.  A physical model of the infrared-to-radio correlation in galaxies , 1993 .

[83]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[84]  J. Condon,et al.  A new starburst model applied to the clumpy irregular galaxy Markarian 325 , 1990 .

[85]  J. Silk,et al.  The origin of magnetic fields and primordial stars in protogalaxies , 1989 .

[86]  D. Sokoloff,et al.  Magnetism of spiral galaxies , 1988, Nature.

[87]  George Helou,et al.  Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies , 1985 .

[88]  de T. Jong,et al.  The Infrared Astronomical Satellite (IRAS) mission , 1984 .

[89]  V. Ginzburg,et al.  Origin of cosmic rays: Galactic models with halo , 1980 .

[90]  J. A. Simpson,et al.  The age of the galactic cosmic rays derived from the abundance of Be-10 , 1977 .

[91]  A. Yahil,et al.  Galactic magnetic fields: cellular or filamentary structure , 1973 .

[92]  E. Parker The dynamical state of the interstellar gas and field. II. , 1966 .