Thermophysical Properties of 1-Butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C4mim][(C2F5)3PF3], and of Its IoNanofluid with Multi-Walled Carbon Nanotubes

Thermophysical properties of 1-butyl-3-methylimidazoliumtris(pentafluoroethyl) trifluorophosphate, [C4mim][(C2F5)3PF3] (CAS RN 917762-91-5) ionic liquid, were measured in the temperature range T = ...

[1]  M. Lourenço,et al.  Thermophysical Properties of 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][(CF3SO2)2N]—New Data, Reference Data, and Reference Correlations , 2020 .

[2]  M. Libera,et al.  Remarkable Thermal Conductivity Enhancement in Carbon-Based Ionanofluids: Effect of Nanoparticle Morphology , 2020, ACS applied materials & interfaces.

[3]  J. Jacquemin,et al.  Thermal Conductivity Enhancement Phenomena in Ionic Liquid-Based Nanofluids (Ionanofluids) , 2019, Australian Journal of Chemistry.

[4]  C. A. N. Castro,et al.  Performance of heat transfer fluids with nanographene in a pilot solar collector , 2018, Solar Energy.

[5]  M. Lourenço,et al.  [C2mim][CH3SO3] – A Suitable New Heat Transfer Fluid? Part 1. Thermophysical and Toxicological Properties , 2018, Industrial & Engineering Chemistry Research.

[6]  A. Pádua,et al.  Thermal Conductivity of Ionic Liquids and IoNanofluids and Their Feasibility as Heat Transfer Fluids , 2018 .

[7]  E. Hassel,et al.  High-temperature and high-pressure density measurements and other derived thermodynamic properties of 1-butyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate , 2017 .

[8]  C. A. N. Castro,et al.  Understanding Stability, Measurements, and Mechanisms of Thermal Conductivity of Nanofluids , 2017 .

[9]  E. Hassel,et al.  Viscosity, Density, Heat Capacity, Speed of Sound and Other Derived Properties of 1-Butyl-3-Methylimidazolium tris(Pentafluoroethyl) Trifluorophosphate over a Wide Range of Temperature and at Atmospheric Pressure , 2017 .

[10]  A. Pádua,et al.  Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials. , 2017, Physical chemistry chemical physics : PCCP.

[11]  C. A. N. Castro,et al.  IoNanofluids: Innovative Agents for Sustainable Development , 2017 .

[12]  S. P. Ijardar,et al.  Thermophysical, acoustic and optical properties of binary mixtures of imidazolium based ionic liquids + polyethylene glycol , 2016 .

[13]  Amir H. Mohammadi,et al.  A group contribution model for prediction of the viscosity with temperature dependency for fluorine-containing ionic liquids , 2016 .

[14]  A. Coronas,et al.  Ru-Imidazolium Halide IoNanofluids: Synthesis, Structural, Morphological and Thermophysical Properties , 2016 .

[15]  Josefa Fernández,et al.  Volumetric behaviour of six ionic liquids from T = (278 to 398) K and up to 120 MPa , 2016 .

[16]  H. Segura,et al.  Thermophysical Properties of 1-Butyl-1-methyl-pyrrolidinium Dicyanamide + H2O Mixtures , 2015 .

[17]  N. Ignat’ev,et al.  New hydrophobic ionic liquids with perfluoroalkyl phosphate and cyanofluoroborate anions , 2015 .

[18]  A. Pádua,et al.  Thermophysical properties of ionic liquid dicyanamide (DCA) nanosystems , 2014 .

[19]  S. R. Schmid,et al.  Measurement and Prediction of the Thermal Conductivity of Tricyanomethanide- and Tetracyanoborate-Based Imidazolium Ionic Liquids , 2014 .

[20]  P. Simões,et al.  Transport and thermal properties of quaternary phosphonium ionic liquids and IoNanofluids , 2013 .

[21]  K. A. Kurnia,et al.  Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions. , 2013, The journal of physical chemistry. B.

[22]  M. Godinho,et al.  Thermophysical and magnetic studies of two paramagnetic liquid salts: [C4mim][FeCl4] and [P6 6 6 14][FeCl4] , 2013 .

[23]  M. Lourenço,et al.  Sepia Melanin: A New Class of Nanomaterial with Anomalously High Heat Storage Capacity Obtained from a Natural Nanofluid , 2013 .

[24]  A. Ribeiro,et al.  Thermal Conductivity of [C n mim][(CF 3 SO 2 ) 2 N] and [C 4 mim][BF 4 ] IoNanofluids with Carbon Nanotubes—Measurement, Theory and Structural Characterization , 2013 .

[25]  Ke-Jun Wu,et al.  Development of a group contribution method for determination of thermal conductivity of ionic liquids , 2013 .

[26]  S. M. Sohel Murshed,et al.  Thermal Conductivity of [C4mim][(CF3SO2)2N] and [C2mim][EtSO4] and Their IoNanofluids with Carbon Nanotubes: Experiment and Theory , 2013 .

[27]  S. M. Sohel Murshed,et al.  Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids , 2012 .

[28]  Hajime Miyashiro,et al.  Comprehensive Refractive Index Property for Room-Temperature Ionic Liquids , 2012 .

[29]  A. Pensado,et al.  Absorption of carbon dioxide, nitrous oxide, ethane and nitrogen by 1-alkyl-3-methylimidazolium (C(n)mim, n = 2,4,6) tris(pentafluoroethyl)trifluorophosphate ionic liquids (eFAP). , 2012, The journal of physical chemistry. B.

[30]  J. Pátek,et al.  Temperature dependence of the surface tension and 0.1 MPa density for 1-Cn-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate with n = 2, 4, and 6 , 2012 .

[31]  I. Fonseca,et al.  Measurements of pVT , viscosity, and surface tension of trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate ionic liquid and modelling with equations of state , 2012 .

[32]  J. C. Reis,et al.  Ultrasound speeds and molar isentropic compressions of aqueous 1-propoxypropan-2-ol mixtures from T = (283.15 to 303.15) K. Influence of solute structure , 2012 .

[33]  C. A. N. Castro,et al.  A new and reliable calibration method for vibrating tube densimeters over wide ranges of temperature and pressure , 2011 .

[34]  J. C. Reis,et al.  Refractive index of liquid mixtures: theory and experiment. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Peter Wasserscheid,et al.  Thermal Conductivity of Ionic Liquids: Measurement and Prediction , 2010 .

[36]  J. Esperança,et al.  Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids (C4mim)(NTf2), (C4mim)(dca), (C2mim)(EtOSO3) and (Aliquat)(dca) , 2010 .

[37]  Morteza Zare,et al.  Temperature-Dependent Density and Viscosity of the Ionic Liquids 1-Alkyl-3-methylimidazolium Iodides: Experiment and Molecular Dynamics Simulation , 2010 .

[38]  G. Dutt Influence of specific interactions on the rotational dynamics of charged and neutral solutes in ionic liquids containing tris(pentafluoroethyl)trifluorophosphate (FAP) anion. , 2010, The journal of physical chemistry. B.

[39]  Morteza Zare,et al.  Temperature dependence of viscosity and relation with the surface tension of ionic liquids , 2010 .

[40]  J. Troncoso,et al.  Dependence against Temperature and Pressure of the Isobaric Thermal Expansivity of Room Temperature Ionic Liquids , 2010 .

[41]  J. Troncoso,et al.  Isobaric Thermal Expansivity for Ionic Liquids with a Common Cation as a Function of Temperature and Pressure , 2010 .

[42]  Elisa Langa,et al.  Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids , 2010 .

[43]  Qichao Zhao,et al.  Using the solvation parameter model to characterize functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion , 2009, Analytical and bioanalytical chemistry.

[44]  M. Gomes,et al.  Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion , 2009 .

[45]  Jared L. Anderson,et al.  Ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate anion: a new class of highly selective and ultra hydrophobic solvents for the extraction of polycyclic aromatic hydrocarbons using single drop microextraction. , 2009, Analytical chemistry.

[46]  João A. P. Coutinho,et al.  Group Contribution Methods for the Prediction of Thermophysical and Transport Properties of Ionic Liquids , 2009 .

[47]  R. Compton,et al.  Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids , 2008 .

[48]  Douglas R. MacFarlane,et al.  Electrodeposition from Ionic Liquids , 2008 .

[49]  G. J. Kabo,et al.  1-Butyl-3-methylimidazolium Tosylate Ionic Liquid: Heat Capacity, Thermal Stability, and Phase Equilibrium of Its Binary Mixtures with Water and Caprolactam , 2007 .

[50]  David Rooney,et al.  Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 K to 353 K , 2007 .

[51]  J. Brennecke,et al.  Improving carbon dioxide solubility in ionic liquids. , 2007, The journal of physical chemistry. B.

[52]  Takuzo Aida,et al.  Ionic liquids for soft functional materials with carbon nanotubes. , 2007, Chemistry.

[53]  C. A. N. Castro,et al.  Isobaric specific heat capacity of water and aqueous cesium chloride solutions for temperatures between 298 K and 370 K at p = 0.1 MPa , 2006 .

[54]  K. Leong,et al.  A model for the thermal conductivity of nanofluids – the effect of interfacial layer , 2006 .

[55]  J. C. Reis,et al.  New tools for the analysis of refractive index measurements in liquid mixtures. Application to 2-diethylaminoethanol + water mixtures from 283.15 to 303.15 K , 2006 .

[56]  Marc J. Assael,et al.  Standard Reference Data for the Viscosity of Toluene , 2006 .

[57]  Johan Jacquemin,et al.  Density and viscosity of several pure and water-saturated ionic liquids , 2006 .

[58]  N. Ignat’ev,et al.  New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions , 2005 .

[59]  Huaqing Xie,et al.  Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture , 2005 .

[60]  Mingming Zhang,et al.  Thermodynamic properties of 1-nutyl-3-methylimidazolium chloride (C4mim[Cl]) ionic liquid , 2005 .

[61]  M. Freemantle IONIC LIQUIDS IN ORGANIC SYNTHESIS , 2004 .

[62]  F. Endres,et al.  Electropolymerization of benzene in a room temperature ionic liquid , 2004 .

[63]  C. Hardacre,et al.  Quantification of halide in ionic liquids using ion chromatography. , 2004, Analytical chemistry.

[64]  Paul J Dyson,et al.  Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. , 2003, Chemical communications.

[65]  Robin D. Rogers,et al.  Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate , 2003 .

[66]  T. Welton,et al.  Characterizing ionic liquids on the basis of multiple solvation interactions. , 2002, Journal of the American Chemical Society.

[67]  C. A. Nieto de Castro,et al.  Calibration of a DSC: its importance for the traceability and uncertainty of thermal measurements , 2000 .

[68]  Marc J. Assael,et al.  Standard Reference Data for the Thermal Conductivity of Water , 1995 .

[69]  B. Kamgar-Parsi,et al.  Representative Equations for the Thermal Conductivity of Water Substance , 1984 .

[70]  H. Pereira,et al.  The influence of water on the thermophysical properties of 1-ethyl-3-methylimidazolium acetate , 2020 .

[71]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[72]  Y. Yang,et al.  Boiling of suspension of solid particles in water , 1984 .

[73]  Joseph Kestin,et al.  Thermophysical properties of fluid D2O , 1984 .