Robust estimation of dimension reduction space

Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy-tailed distributions. Two recently proposed methods, minimum average variance estimation and outer product of gradients, can be and are made robust in such a way that preserves all advantages of the original approach. Their extension based on the local one-step M-estimators is sufficiently robust to outliers and data from heavy-tailed distributions, it is relatively easy to implement, and surprisingly, it performs as well as the original methods when applied to normally distributed data.

[1]  Fan Jianqing,et al.  Variable bandwidth and one-step local M-estimator , 2000 .

[2]  R. Cook,et al.  Theory & Methods: Special Invited Paper: Dimension Reduction and Visualization in Discriminant Analysis (with discussion) , 2001 .

[3]  Toshio Odanaka,et al.  ADAPTIVE CONTROL PROCESSES , 1990 .

[4]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[5]  D. W. Scott,et al.  The L 1 Method for Robust Nonparametric Regression , 1994 .

[6]  Elvezio Ronchetti,et al.  Robust Linear Model Selection by Cross-Validation , 1997 .

[7]  Qiwei Yao,et al.  On subset selection in non-parametric stochastic regression , 1994 .

[8]  J. Simonoff,et al.  The conditional breakdown properties of least absolute value local polynomial estimators , 2003 .

[9]  Shinichi Sakata,et al.  HIGH BREAKDOWN POINT CONDITIONAL DISPERSION ESTIMATION WITH APPLICATION TO S&P 500 DAILY RETURNS VOLATILITY , 1998 .

[10]  Sophie Lambert-Lacroix,et al.  Effective dimension reduction methods for tumor classification using gene expression data , 2003, Bioinform..

[11]  A. Tsybakov,et al.  Robust nonparametric regression with simultaneous scale curve estimation , 1988 .

[12]  Werner A. Stahel,et al.  Statistics in Genetics and in the Environmental Sciences , 2001, Entropy.

[13]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[14]  A. Tsybakov,et al.  Sliced Inverse Regression for Dimension Reduction - Comment , 1991 .

[15]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[16]  E. Ronchetti,et al.  A journey in single steps: robust one-step M-estimation in linear regression , 2002 .

[17]  Stefan Van Aelst,et al.  Theory and applications of recent robust methods , 2004 .

[18]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[19]  P. Čížek Smoothed Local L-Estimation With an Application , 2004 .

[20]  Local L-estimators for nonparametric regression under dependence , 1994 .

[21]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[22]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[23]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[24]  Ursula Gather,et al.  A Robustified Version of Sliced Inverse Regression , 2001 .

[25]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[26]  W. Härdle,et al.  Nonparametric Risk Management With Generalized Hyperbolic Distributions , 2005 .

[27]  Anestis Antoniadis,et al.  Dimension reduction in functional regression with applications , 2006, Comput. Stat. Data Anal..