Asymmetric synthesis of highly functionalized tetrahydropyrans via a one-pot organocatalytic Michael/Henry/ketalization sequence.

A diastereo- and enantioselective Michael/Henry/ketalization sequence to functionalized tetrahydropyrans is described. The multicomponent cascade reaction uses acetylacetone or β-keto esters, β-nitrostyrenes, and alkynyl aldehydes as substrates affording tetrahydropyrans with five contiguous stereocenters. Employing a bifunctional quinine-based squaramide organocatalyst, the title compounds are obtained in moderate to good yields (27-80%), excellent enantiomeric excesses (93-99% ee), and high diastereomeric ratios (dr > 20:1) after one crystallization.

[1]  D. Enders,et al.  Asymmetric Synthesis of Functionalized Dihydro- and Tetrahydropyrans via an Organocatalytic Domino Michael-Hemiacetalization Reaction. , 2014, Synthesis.

[2]  S. Bräse,et al.  Asymmetric organocatalytic synthesis of 4,6-bis(1H-indole-3-yl)-piperidine-2 carboxylates. , 2014, Organic & biomolecular chemistry.

[3]  Hai-Bing Zhou,et al.  C3‐Symmetric Cinchonine‐Squaramide‐Catalyzed Asymmetric Chlorolactonization of Styrene‐Type Carboxylic Acids with 1,3‐Dichloro‐5,5‐dimethylhydantoin: An Efficient Method to Chiral Isochroman‐1‐ones , 2014 .

[4]  T. Akiyama,et al.  Stereoselective construction of all-carbon quaternary center by means of chiral phosphoric acid: highly enantioselective Friedel–Crafts reaction of indoles with β,β-disubstituted nitroalkenes , 2014 .

[5]  D. Enders,et al.  Enantio- and chemoselective Brønsted-acid/Mg(nBu)2 catalysed reduction of α-keto esters with catecholborane. , 2014, Chemical communications.

[6]  P. Melchiorre,et al.  Asymmetric vinylogous Diels-Alder reactions catalyzed by a chiral phosphoric acid. , 2014, Angewandte Chemie.

[7]  T. Arai,et al.  Diversity-oriented asymmetric catalysis (DOAC): stereochemically divergent synthesis of thiochromanes using an imidazoline-aminophenol-nickel-catalyzed Michael/Henry reaction. , 2014, Organic letters.

[8]  D. Enders,et al.  Organocatalytic Asymmetric Synthesis of Functionalized 1,3,5-Triarylpyrrolidin-2-ones via an Aza-Michael/Aldol Domino Reaction , 2014, Synthesis.

[9]  Magnus Rueping,et al.  Catalytic C-C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. , 2014, Chemical reviews.

[10]  E. Chen,et al.  Organocatalysis in biorefining for biomass conversion and upgrading , 2014 .

[11]  D. Enders,et al.  N-heterocyclic carbene catalyzed activation of esters: a new option for asymmetric domino reactions. , 2014, Angewandte Chemie.

[12]  B. Liu,et al.  BINOL–quinine–squaramides as efficient organocatalysts for the asymmetric Michael addition of 2-hydroxy-1,4-naphthoquinone to nitroalkenes , 2014 .

[13]  Jindian Duan,et al.  Asymmetric organocatalysis mediated by primary amines derived from cinchona alkaloids: recent advances , 2014 .

[14]  Rui Wang,et al.  An organocatalytic Michael-Michael cascade for the enantioselective construction of spirocyclopentane bioxindoles: control of four contiguous stereocenters. , 2014, Organic letters.

[15]  D. Enders,et al.  Asymmetric synthesis of pyrroloindolones by N-heterocyclic carbene catalyzed [2+3] annulation of α-chloroaldehydes with nitrovinylindoles. , 2013, Angewandte Chemie.

[16]  D. Enders,et al.  N-heterocyclic-carbene-catalyzed one-pot synthesis of hydroxamic esters. , 2013, Chemistry, an Asian journal.

[17]  I. Chatterjee,et al.  Vinylogous Organocatalytic Triple Cascade Reaction: Forging Six Stereocenters in Complex Spiro‐Oxindolic Cyclohexanes , 2013 .

[18]  D. Kim,et al.  Asymmetric Synthesis of Tetrahydroquinolines via 1,5‐Hydride Transfer/Cyclization Catalyzed by Chiral Primary Amine Catalysts , 2013 .

[19]  Andrew D. Smith,et al.  Asymmetric NHC-catalyzed redox α-amination of α-aroyloxyaldehydes. , 2013, Organic letters.

[20]  P. Dalko Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications , 2013 .

[21]  D. Enders,et al.  Asymmetric domino synthesis of indanes bearing four contiguous stereocentres catalyzed by sub-mol% loadings of a squaramide in minutes. , 2013, Chemical communications.

[22]  Y. Kanda,et al.  Diarylprolinol in an Asymmetric, Direct Cross‐Aldol Reaction with Alkynyl Aldehydes , 2013 .

[23]  Y. Wang,et al.  Asymmetric Organocatalytic Cascade Michael/Hemiketalization/Retro-Aldol Reaction of 2-[(E)-2-Nitrovinyl]phenols with 2,4-Dioxo-4-arylbutanoates: A Convenient Access to Chiral α-Keto Esters , 2013 .

[24]  Y. Wang,et al.  Enantioselective organocatalytic domino Michael/aldol reactions: an efficient procedure for the stereocontrolled construction of 2H-thiopyrano[2,3-b]quinoline scaffolds. , 2013, Chemistry, an Asian journal.

[25]  L. Ouyang,et al.  Organocatalytic tandem Morita-Baylis-Hillman-Michael reaction for asymmetric synthesis of a drug-like oxa-spirocyclic indanone scaffold. , 2013, Chemical communications.

[26]  D. Enders,et al.  Organocatalytic asymmetric synthesis of tetracyclic pyridocarbazole derivatives by using a Diels-Alder/aza-Michael/aldol condensation domino reaction. , 2013, Chemistry.

[27]  D. Enders,et al.  Asymmetric Organocatalytic Michael Addition of Pyrroles to Enones by Cinchona Alkaloid-Derived Primary Amines , 2013 .

[28]  K. Scheidt,et al.  A dual Lewis base activation strategy for enantioselective carbene-catalyzed annulations. , 2013, Journal of the American Chemical Society.

[29]  Arun K. Ghosh,et al.  Bifunctional cinchona alkaloid-squaramide-catalyzed highly enantioselective aza-Michael addition of indolines to α,β-unsaturated ketones. , 2013, Tetrahedron letters.

[30]  Alex Hamilton,et al.  A mechanistic rationale for the 9-amino(9-deoxy)epi cinchona alkaloids catalyzed asymmetric reactions via iminium ion activation of enones. , 2013, Journal of the American Chemical Society.

[31]  D. Lupton,et al.  Acyl anion free N-heterocyclic carbene organocatalysis. , 2013, Chemical Society reviews.

[32]  A. Alexakis,et al.  Highly diastereo- and enantioselective organocatalytic domino Michael/aldol reaction of acyclic 3-halogeno-1,2-diones to α,β-unsaturated aldehydes. , 2013, Organic letters.

[33]  Ian D. Williams,et al.  Stereoselective synthesis of aminoindanols via an efficient cascade aza-Michael-aldol reaction. , 2013, Chemical communications.

[34]  D. Enders,et al.  Asymmetric Synthesis of Functionalized Tetrahydronaphthalenes via an Organocatalytic Nitroalkane‐Michael/Henry Domino Reaction , 2013 .

[35]  Xavier Bugaut,et al.  Enantioselective Organocatalyzed Domino Synthesis of Six-Membered Carbocycles , 2013 .

[36]  Long He,et al.  Chiral Phosphoric Acid‐Catalyzed Enantioselective Aza‐Friedel–Crafts Alkylation of Indoles with γ‐Hydroxy‐γ‐lactams , 2013 .

[37]  D. Enders,et al.  An Asymmetric Organocatalytic Quadruple Cascade Initiated by a Friedel–Crafts‐Type Reaction with Electron‐Rich Arenes , 2013 .

[38]  M. Lombardo,et al.  A New Henry/Michael/Retro‐Henry/Henry Domino Sequence Promoted by Bifunctional Organocatalysts , 2013 .

[39]  D. Enders,et al.  A branched domino reaction: asymmetric organocatalytic two-component four-step synthesis of polyfunctionalized cyclohexene derivatives. , 2013, Angewandte Chemie.

[40]  M. Elsegood,et al.  Organocatalytic asymmetric domino Michael-Henry reaction for the synthesis of substituted bicyclo[3.2.1]octan-2-ones. , 2013, Chemical communications.

[41]  P. Melchiorre,et al.  Synthesis of 9-amino(9-deoxy)epi cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds , 2013, Nature Protocols.

[42]  J. Zhao,et al.  One-pot sequential organocatalysis: highly stereoselective synthesis of trisubstituted cyclohexanols. , 2013, Chemistry.

[43]  Jian Sun,et al.  One-pot formation of chiral polysubstituted 3,4-dihydropyrans via a novel organocatalytic domino sequence involving alkynal self-condensation. , 2013, Organic letters.

[44]  Karl A. Scheidt,et al.  Anwendungen der Katalyse mit N‐heterocyclischen Carbenen in Totalsynthesen , 2012 .

[45]  K. Scheidt,et al.  A continuum of progress: applications of N-hetereocyclic carbene catalysis in total synthesis. , 2012, Angewandte Chemie.

[46]  P. Melchiorre Cinchona-based primary amine catalysis in the asymmetric functionalization of carbonyl compounds. , 2012, Angewandte Chemie.

[47]  D. Enders,et al.  Quadruple domino organocatalysis: an asymmetric aza-Michael/Michael/Michael/aldol reaction sequence leading to tetracyclic indole structures with six stereocenters. , 2012, Chemistry.

[48]  Peter R. Schreiner,et al.  Evolution of asymmetric organocatalysis: multi- and retrocatalysis , 2012 .

[49]  D. Enders,et al.  Control of Six Contiguous Stereocenters in an Asymmetric Organocatalytic One‐Pot Michael/Michael/Aldol Addition Sequence , 2012 .

[50]  W. Xiao,et al.  Development of cascade reactions for the concise construction of diverse heterocyclic architectures. , 2012, Accounts of chemical research.

[51]  Frank Glorius,et al.  Organocatalytic umpolung: N-heterocyclic carbenes and beyond. , 2012, Chemical Society reviews.

[52]  H. Pellissier Recent Developments in Asymmetric Organocatalytic Domino Reactions , 2012 .

[53]  Rebecca L. Davis,et al.  Asymmetric organocatalytic formal [2 + 2]-cycloadditions via bifunctional H-bond directing dienamine catalysis. , 2012, Journal of the American Chemical Society.

[54]  D. Enders,et al.  Durch N‐heterocyclische Carbene katalysierte Dominoreaktionen , 2012 .

[55]  D. Enders,et al.  N-heterocyclic carbene catalyzed domino reactions. , 2012, Angewandte Chemie.

[56]  K. Jørgensen,et al.  A simple recipe for sophisticated cocktails: organocatalytic one-pot reactions--concept, nomenclature, and future perspectives. , 2011, Angewandte Chemie.

[57]  Frank Glorius,et al.  Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners. , 2011, Accounts of chemical research.

[58]  K. Jørgensen,et al.  Squaramides: bridging from molecular recognition to bifunctional organocatalysis. , 2011, Chemistry.

[59]  A. Moyano,et al.  Asymmetric organocatalytic cyclization and cycloaddition reactions. , 2011, Chemical reviews.

[60]  R. I. Storer,et al.  Squaramides: physical properties, synthesis and applications. , 2011, Chemical Society reviews.

[61]  Y. Hayashi,et al.  Asymmetric one-pot four-component coupling reaction: synthesis of substituted tetrahydropyrans catalyzed by diphenylprolinol silyl ether. , 2011, Angewandte Chemie.

[62]  M. Rueping,et al.  Nature-inspired cascade catalysis: reaction control through substrate concentration--double vs. quadruple domino reactions. , 2011, Chemical communications.

[63]  Y. Wang,et al.  Thiophosphoramide catalyzed asymmetric Michael addition of acetone to functionalized nitrostyrenes: a convenient approach to optically active tetrahydropyrans , 2010 .

[64]  Raquel P. Herrera,et al.  Asymmetric organocatalytic synthesis of γ-nitrocarbonyl compounds through Michael and Domino reactions , 2010 .

[65]  C. Barbas,et al.  Organocatalytic asymmetric assembly reactions for the syntheses of carbohydrate derivatives by intermolecular Michael-Henry reactions , 2010, Proceedings of the National Academy of Sciences.

[66]  M. Terada Chiral Phosphoric Acids asVersatile Catalysts for Enantioselective Transformations , 2010 .

[67]  D. Enders,et al.  Organocatalytic cascade reactions as a new tool in total synthesis. , 2010, Nature chemistry.

[68]  S. Gastaldi,et al.  Synthesis of tetrahydropyrans and related heterocycles via prins cyclization; extension to aza-prins cyclization , 2010 .

[69]  M. Brimble,et al.  Synthesis of natural products containing spiroketals via intramolecular hydrogen abstraction. , 2010, Organic & biomolecular chemistry.

[70]  Raquel P. Herrera,et al.  Enantioselective OrganocatalyticDiels-Alder Reactions , 2010 .

[71]  A. Berkessel,et al.  Noncovalent organocatalysis based on hydrogen bonding: elucidation of reaction paths by computational methods. , 2010, Topics in current chemistry.

[72]  T. Rovis,et al.  Carbene catalysts. , 2010, Topics in current chemistry.

[73]  S. Chandrasekhar,et al.  Enantiopure cycloalkane fused tetrahydropyrans through domino Michael-ketalizations with organocatalysis. , 2009, Chemical communications.

[74]  K. Jørgensen,et al.  Organocatalysis--after the gold rush. , 2009, Chemical Society reviews.

[75]  J. Gestwicki,et al.  Enantioselective organocatalytic Hantzsch synthesis of polyhydroquinolines. , 2009, Organic letters.

[76]  J. Bats,et al.  Asymmetric organocatalytic domino Michael/aldol reactions: enantioselective synthesis of chiral cycloheptanones, tetrahydrochromenones, and polyfunctionalized bicyclo[3.2.1]octanes. , 2009, Angewandte Chemie.

[77]  T. Gasperi,et al.  Organocatalytic formation of quaternary stereocenters , 2009 .

[78]  P. Schreiner,et al.  (Thio)urea organocatalysis--what can be learnt from anion recognition? , 2009, Chemical Society reviews.

[79]  Zhen-yuan Xu,et al.  A Novel Enantioselective Catalytic Tandem Oxa‐Michael–Henry Reaction: One‐Pot Organocatalytic Asymmetric Synthesis of 3‐Nitro‐2H‐chromenes , 2008 .

[80]  V. Rawal,et al.  Chiral squaramide derivatives are excellent hydrogen bond donor catalysts. , 2008, Journal of the American Chemical Society.

[81]  P. Vogel,et al.  Recent Synthetic Approaches Toward Non-anomeric Spiroketals in Natural Products , 2008, Molecules.

[82]  S. Tsogoeva,et al.  Highly enantioselective organocatalytic formation of a quaternary carbon center via chiral Brønsted acid catalyzed self-coupling of enamides. , 2008, Chemical communications.

[83]  D. MacMillan,et al.  The advent and development of organocatalysis , 2008, Nature.

[84]  B. R. Raju,et al.  Asymmetric Synthesis of Naturally Occuring Spiroketals , 2008, Molecules.

[85]  A. Dondoni,et al.  Asymmetrische Organokatalyse: Eintritt in die Reifezeit† , 2008 .

[86]  Alessandro Massi,et al.  Asymmetric organocatalysis: from infancy to adolescence. , 2008, Angewandte Chemie.

[87]  Yongxin Li,et al.  Organocatalytic asymmetric tandem Michael-Henry reactions: a highly stereoselective synthesis of multifunctionalized cyclohexanes with two quaternary stereocenters. , 2008, Organic letters.

[88]  C. Barbas Organocatalysis lost: modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus. , 2008, Angewandte Chemie.

[89]  I. Larrosa,et al.  Synthesis of six-membered oxygenated heterocycles through carbon-oxygen bond-forming reactions , 2008 .

[90]  Carlos F. Barbas Die verlorene Organokatalyse: moderne Chemie, klassische Chemie und ein unbemerkter Biosynthesemechanismus , 2008 .

[91]  Abigail G Doyle,et al.  Small-molecule H-bond donors in asymmetric catalysis. , 2007, Chemical reviews.

[92]  D. Enders,et al.  Organocatalysis by N-heterocyclic carbenes. , 2007, Chemical reviews.

[93]  G. E. Keck,et al.  A new construction of 2-alkoxypyrans by an acylation-reductive cyclization sequence. , 2007, Organic letters.

[94]  S. Tsogoeva Recent Advances in Asymmetric Organocatalytic 1,4‐Conjugate Additions , 2007 .

[95]  D. Enders,et al.  Asymmetrische organokatalytische Dominoreaktionen , 2007 .

[96]  D. Enders,et al.  Asymmetric organocatalytic domino reactions. , 2007, Angewandte Chemie.

[97]  M. Rueping,et al.  Cooperative coexistence: effective interplay of two Brønsted acids in the asymmetric synthesis of isoquinuclidines. , 2006, Angewandte Chemie.

[98]  S. Connon Organocatalysis mediated by (thio)urea derivatives. , 2006, Chemistry.

[99]  Frank Glorius,et al.  Asymmetric heterogeneous catalysis. , 2006, Angewandte Chemie.

[100]  Eric N. Jacobsen,et al.  Asymmetrische Katalyse durch chirale Wasserstoffbrückendonoren , 2006 .

[101]  Mark S. Taylor,et al.  Asymmetric catalysis by chiral hydrogen-bond donors. , 2006, Angewandte Chemie.

[102]  M. Terada,et al.  Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. , 2004, Journal of the American Chemical Society.

[103]  Junji Itoh,et al.  Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. , 2004, Angewandte Chemie.

[104]  P. Schreiner Metal-free organocatalysis through explicit hydrogen bonding interactions. , 2003, Chemical Society reviews.

[105]  Mark Frigerio,et al.  The chemistry and biology of the bryostatin antitumour macrolides. , 2002, Natural product reports.

[106]  H. Reichenbach,et al.  Antibiotics from Gliding Bacteria, LIV. Isolation and Structure Elucidation of Soraphen A1α, a Novel Antifungal Macrolide from Sorangium cellulosum† , 1993 .

[107]  T. Willson,et al.  Studies related to the synthesis of pederin. Part 2. Synthesis of pederol dibenzoate and benzoylpedamide. , 1990 .

[108]  T. Willson,et al.  Studies related to the synthesis of (±)-pederin. part 1. Synthesis of ethyl pederate and benzoylselenopederic acid , 1990 .

[109]  G. Posner,et al.  Nitroolefins in one-flask, tandem. A+B+C coupling reactions producing heterocycles , 1990 .

[110]  Françoise Perron,et al.  Chemistry of spiroketals , 1989 .