Beyond bilinear controllability : applications to quantum control

Quantum control is traditionally expressed through bilinear models and their associated Lie algebra controllability criteria. But, the first order approximation are not always sufficient and higher order developpements are used in recent works. Motivated by these applications, we give in this paper a criterion that applies to situations where the evolution operator is expressed as sum of possibly non-linear real functionals of the control that multiplies some time independent (coupling) operators.

[1]  H. Rabitz,et al.  Wavefunction controllability in quantum systems , 2003 .

[2]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[3]  Herschel Rabitz,et al.  Quantum wavefunction controllability , 2001 .

[4]  Vladislav V. Yakovlev,et al.  Quantum Control of Population Transfer in Green Fluorescent Protein by Using Chirped Femtosecond Pulses , 1998 .

[5]  Mazyar Mirrahimi,et al.  Controllability of quantum harmonic oscillators , 2004, IEEE Transactions on Automatic Control.

[6]  Herschel Rabitz,et al.  Wavefunction controllability for finite-dimensional bilinear quantum systems , 2003 .

[7]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  André D. Bandrauk,et al.  Two-frequency IR laser orientation of polar molecules. Numerical simulations for HCN , 1999 .

[9]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[10]  A. I. Solomon,et al.  Complete controllability of quantum systems , 2000, quant-ph/0010031.

[11]  A. L. Onishchik,et al.  Foundations of Lie theory ; Lie transformation groups , 1993 .

[12]  Claude Le Bris,et al.  Mathematical models and methods for ab initio quantum chemistry , 2000 .

[13]  Gabriel Turinici,et al.  Controllable quantities for bilinear quantum systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[14]  H Rabitz,et al.  Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses , 2001, Science.

[15]  A. Bandrauk,et al.  Numerical methods for molecular time-dependent schrödinger equations — bridging the perturbative to nonperturbative regime , 2003 .

[16]  U. Keller,et al.  Adaptive feedback control of ultrafast semiconductor nonlinearities , 2000 .

[17]  André D. Bandrauk,et al.  LASER-INDUCED ALIGNMENT DYNAMICS OF HCN : ROLES OF THE PERMANENT DIPOLE MOMENT AND THE POLARIZABILITY , 1999 .

[18]  Nicolas Bourbaki,et al.  Lie Groups and Lie Algebras: Chapters 7-9 (Elements of Mathematics) , 2008 .

[19]  N. Bourbaki Elements of mathematics : algebra , 2003 .

[20]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[21]  I. Christov,et al.  Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays , 2000, Nature.

[22]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[23]  Jerrold E. Marsden,et al.  Controllability for Distributed Bilinear Systems , 1982 .

[24]  T. Hornung,et al.  Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain , 2000 .

[25]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[26]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[27]  Vladislav V. Yakovlev,et al.  Feedback quantum control of molecular electronic population transfer , 1997 .

[28]  D. Bucknall,et al.  Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses , 1998 .

[29]  C. Lobry Controllability of Nonlinear Systems on Compact Manifolds , 1974 .

[30]  N. Bourbaki,et al.  Lie Groups and Lie Algebras: Chapters 1-3 , 1989 .

[31]  P. Bucksbaum,et al.  Controlling the shape of a quantum wavefunction , 1999, Nature.

[32]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[33]  S. Bhat Controllability of Nonlinear Systems , 2022 .

[34]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[35]  B. L. Waerden,et al.  Zur algebraischen Geometrie. IX , 1937 .

[36]  Gabriel Turinici,et al.  On the controllability of bilinear quantum systems , 2000 .