The folding fingerprint of visual cortex reveals the timing of human V1 and V2

Primate neocortex contains over 30 visual areas. Recent techniques such as functional magnetic resonance imaging (fMRI) have successfully identified many of these areas in the human brain, but have been of limited value for revealing the temporal dynamics between adjacent visual areas, a critical component of understanding visual cognition. The voltages recorded at the scalp, electroencephalography (EEG), is a direct measure of neural activity that reflects the summed activity across all brain areas. Identifying the cortical sources that contribute to the EEG is a difficult problem. We developed an anatomically constrained dipole search method that solves the traditional problems by combining fMRI, EEG and many stimuli that activate small cortical regions. The method provides a means to validate the extracted waveforms. Both V1 and V2 waveforms have similar onset latencies as well as dynamics that can explain previous controversial findings about the responses of these areas.