Single ion qubit with estimated coherence time exceeding one hour

Realizing a long coherence time quantum memory is a major challenge of current quantum technology. Until now, the longest coherence-time of a single qubit was reported as 660 s in a single 171 Yb + ion-qubit through the technical developments of sympathetic cooling and dynamical decoupling pulses, which addressed heating-induced detection inefficiency and magnetic field fluctuations. However, it was not clear what prohibited further enhancement. Here, we identify and suppress the limiting factors, which are the remaining magnetic-field fluctuations, frequency instability and leakage of the microwave reference-oscillator. Then, we observe the coherence time of around 5500 s for the 171 Yb + ion-qubit, which is the time constant of the exponential decay fit from the measurements up to 960 s. We also systematically study the decoherence process of the quantum memory by using quantum process tomography and analyze the results by applying recently developed resource theories of quantum memory and coherence. Our experimental demonstration will accelerate practical applications of quantum memories for various quantum information processing, especially in the noisy-intermediate-scale quantum regime. Extending qubit coherence times represent one of the key challenges for quantum technologies. Here, after properly suppressing magnetic-field fluctuations, frequency instability and leakage of the microwave reference-oscillator, the authors infer coherence times of 5500 s for an Yb ion qubit.

[1]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[2]  N. Lutkenhaus,et al.  Quantum repeaters with imperfect memories: Cost and scalability , 2008, 0810.5334.

[3]  Siddhartha Santra,et al.  Quantum repeaters based on two species trapped ions , 2018, 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[4]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1990 .

[5]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[6]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[7]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[8]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[9]  R. B. Blakestad,et al.  Fluorescence during Doppler cooling of a single trapped atom , 2007, 0707.1314.

[10]  C. Simon,et al.  Quantum Repeaters based on Single Trapped Ions , 2009, 0902.3127.

[11]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[12]  R. Ozeri,et al.  Measurement of the Magnetic Interaction Between Two Electrons , 2013, 1312.4881.

[13]  Christopher Monroe,et al.  Quantum Networks with Trapped Ions , 2007 .

[14]  D. Leibrandt,et al.  Systematic uncertainty due to background-gas collisions in trapped-ion optical clocks. , 2019, Physical review. A.

[15]  Measurement of the magnetic interaction between two bound electrons of two separate ions , 2014, Nature.

[16]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[17]  Xiongfeng Ma,et al.  Intrinsic randomness as a measure of quantum coherence , 2015, 1505.04032.

[18]  C. Monroe,et al.  Cryogenic trapped-ion system for large scale quantum simulation , 2018, Quantum Science and Technology.

[19]  Liang Jiang,et al.  Unforgeable noise-tolerant quantum tokens , 2011, Proceedings of the National Academy of Sciences.

[20]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[21]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[22]  Anna Keselman,et al.  Single-ion quantum lock-in amplifier , 2011, Nature.

[23]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[24]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[25]  M. Rötteler,et al.  Asymmetric quantum codes: constructions, bounds and performance , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[27]  W. Dur,et al.  Role of memory errors in quantum repeaters , 2007 .

[28]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[29]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems, 2nd, Revised and Enlarged Edition , 2004 .

[30]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1990, Conference on Precision Electromagnetic Measurements.

[31]  Mark Um,et al.  Single-qubit quantum memory exceeding ten-minute coherence time , 2017, 1701.04195.

[32]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[33]  B. M. Fulk MATH , 1992 .

[34]  E. Knill,et al.  Simplified motional heating rate measurements of trapped ions , 2007, 0707.1528.

[35]  H. Häffner,et al.  Robust entanglement , 2005 .

[36]  Michael J. Biercuk,et al.  Designing a practical high-fidelity long-time quantum memory , 2013, Nature Communications.

[37]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[38]  T. Mehlstaubler,et al.  Probing Time Dilation in Coulomb Crystals in a High-Precision Ion Trap , 2017, Physical Review Applied.

[39]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[40]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[41]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[42]  Y. O. Dudin,et al.  Light storage on the time scale of a minute , 2013 .

[43]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[44]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[45]  C. Ospelkaus,et al.  Decoherence due to elastic Rayleigh scattering. , 2010, Physical review letters.

[46]  C Langer,et al.  Hyperfine coherence in the presence of spontaneous photon scattering. , 2005, Physical review letters.

[47]  David Blair,et al.  Very high Q microwave spectroscopy on trapped /sup 171/Yb/sup +/ ions: application as a frequency standard , 1995 .

[48]  T. Walter,et al.  Characterizing frequency stability: a continuous power-law model with discrete sampling , 1994 .

[49]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[50]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[51]  Michael J. Biercuk,et al.  The role of master clock stability in quantum information processing , 2016, npj Quantum Information.

[52]  L.-M. Duan,et al.  Correcting detection errors in quantum state engineering through data processing , 2012, 1201.4379.

[53]  R. Ozeri,et al.  Nonlinear single-spin spectrum analyzer. , 2013, Physical review letters.

[54]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[55]  A. Steane,et al.  Probing Qubit Memory Errors at the Part-per-Million Level. , 2019, Physical review letters.

[56]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[57]  F. Schmidt-Kaler,et al.  A long-lived Zeeman trapped-ion qubit , 2016, 1606.07220.

[58]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[59]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[60]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[61]  M. Gu,et al.  Universal and operational benchmarking of quantum memories , 2019, npj Quantum Information.

[62]  Zdeněk Hradil,et al.  Maximum-likelihood estimation of quantum processes , 2001, OFC 2001.

[63]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.