A central pattern generator producing alternative outputs: temporal pattern of premotor activity.

The central pattern generator for heartbeat in medicinal leeches constitutes seven identified pairs of segmental heart interneurons. Four identified pairs of heart interneurons make a staggered pattern of inhibitory synaptic connections with segmental heart motor neurons. Using extracellular recording from multiple interneurons in the network in 56 isolated nerve cords, we show that this pattern generator produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons. This pattern corresponds to a similarly asymmetric fictive motor pattern in heart motor neurons and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. We provide a quantitative description of the firing pattern of all the premotor interneurons, including phase, duty cycle, and intraburst frequency of this premotor activity pattern. This analysis identifies two stereotypical coordination modes corresponding to synchronous and peristaltic, which show phase constancy over a broad range of periods as do the fictive motor pattern and the heart constriction pattern. Coordination mode is controlled through one segmental pair of heart interneurons (switch interneurons). Side-to-side switches in coordination mode are a regular feature of this pattern generator and occur with changes in activity state of these switch interneurons. Associated with synchronous coordination of premotor interneurons, the ipsilateral switch interneuron is in an active state, during which it produces rhythmic bursts, whereas associated with peristaltic coordination, the ipsilateral switch interneuron is largely silent. We argue that timing and pattern elaboration are separate functions produced by overlapping subnetworks in the heartbeat central pattern generator.

[1]  Kevin Staras,et al.  Endogenous and network properties of Lymnaea feeding central pattern generator interneurons. , 2002, Journal of neurophysiology.

[2]  Alan Roberts,et al.  Modelling Inter-Segmental Coordination of Neuronal Oscillators: Synaptic Mechanisms for Uni-Directional Coupling During Swimming in Xenopus Tadpoles , 2002, Journal of Computational Neuroscience.

[3]  Ronald L Calabrese,et al.  Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals. , 2004, Journal of neurophysiology.

[4]  R. Calabrese,et al.  Neural control of heartbeat in the leech, Hirudo medicinalis. , 1983, Symposia of the Society for Experimental Biology.

[5]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[6]  Ronald L Calabrese,et al.  Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network. , 2002, Journal of neurophysiology.

[7]  Ronald L. Calabrese,et al.  Neural control of the hearts in the leech,Hirudo medicinalis , 1984, Journal of Comparative Physiology A.

[8]  Jianhua Cang,et al.  Model for intersegmental coordination of leech swimming: central and sensory mechanisms. , 2002, Journal of neurophysiology.

[9]  Ronald L. Calabrese,et al.  The neural control of alternate heartbeat coordination states in the leech,Hirudo medicinalis , 2004, Journal of comparative physiology.

[10]  J. C. Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. , 1999, Journal of neurophysiology.

[11]  B. Mulloney,et al.  Local commissural interneurons integrate information from intersegmental coordinating interneurons , 2003, The Journal of comparative neurology.

[12]  R. Calabrese,et al.  Switching in the activity state of an interneuron that controls coordination of the hearts in the medicinal leech (Hirudo medicinalis). , 1994, The Journal of experimental biology.

[13]  R. Calabrese,et al.  Outward currents in heart motor neurons of the medicinal leech. , 1995, Journal of neurophysiology.

[14]  S. Grillner,et al.  Mechanisms of Rhythm Generation in a Spinal Locomotor Network Deprived of Crossed Connections: The Lamprey Hemicord , 2005, The Journal of Neuroscience.

[15]  B Mulloney,et al.  Nonspiking local interneuron in the motor pattern generator for the crayfish swimmeret. , 1985, Journal of neurophysiology.

[16]  R. Calabrese,et al.  Heartbeat control in leeches. II. Fictive motor pattern. , 2004, Journal of neurophysiology.

[17]  S. Grillner,et al.  Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey , 1999, Biological Cybernetics.

[18]  Anders Lansner,et al.  Biophysically detailed modelling of microcircuits and beyond , 2005, Trends in Neurosciences.

[19]  S. Hooper,et al.  Crustacean Motor Pattern Generator Networks , 2004, Neurosignals.

[20]  K. R. Weiss,et al.  Variability of swallowing performance in intact, freely feeding aplysia. , 2005, Journal of neurophysiology.

[21]  Jian Jing,et al.  Feeding Neural Networks in the Mollusc Aplysia , 2004, Neurosignals.

[22]  E. Marder,et al.  Invertebrate Central Pattern Generation Moves along , 2005, Current Biology.

[23]  I. Zerbst-Boroffka,et al.  Blood Pressure in the Leech Hirudo Medicinalis , 1983 .

[24]  Anders Lansner,et al.  Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey , 1999, Biological Cybernetics.

[25]  Ole Kiehn,et al.  Firing Properties of Identified Interneuron Populations in the Mammalian Hindlimb Central Pattern Generator , 2002, The Journal of Neuroscience.

[26]  S. Grillner Control of Locomotion in Bipeds, Tetrapods, and Fish , 1981 .

[27]  O. Kiehn,et al.  Central Pattern Generators Deciphered by Molecular Genetics , 2004, Neuron.

[28]  Eve Marder,et al.  Animal-to-Animal Variability in Motor Pattern Production in Adults and during Growth , 2005, The Journal of Neuroscience.

[29]  Stefan Clemens,et al.  Cycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons. , 2004, Journal of neurophysiology.

[30]  J C Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions. , 2001, Journal of neurophysiology.

[31]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[32]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[33]  R. Calabrese,et al.  The roles of endogenous membrane properties and synaptic interaction in generating the heartbeat rhythm of the leech, Hirudo medicinalis. , 1979, The Journal of experimental biology.

[34]  Ilya A Rybak,et al.  Modelling respiratory rhythmogenesis: focus on phase switching mechanisms. , 2004, Advances in experimental medicine and biology.

[35]  Gunther S. Stent,et al.  Neuronal control of heartbeat in the medicinal leech , 2004, Journal of comparative physiology.

[36]  M. P. Nusbaum,et al.  A small-systems approach to motor pattern generation , 2002, Nature.

[37]  I. Hurwitz,et al.  B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica. , 1996, Journal of neurophysiology.

[38]  Ronald L Calabrese,et al.  A Functional Asymmetry in the Leech Heartbeat Timing Network Is Revealed by Driving the Network across Various Cycle Periods , 2002, The Journal of Neuroscience.

[39]  M. A. Masino,et al.  Bursting in Leech Heart Interneurons: Cell-Autonomous and Network-Based Mechanisms , 2002, The Journal of Neuroscience.

[40]  O. Kiehn,et al.  Functional Identification of Interneurons Responsible for Left-Right Coordination of Hindlimbs in Mammals , 2003, Neuron.

[41]  J. Jing,et al.  The Construction of Movement with Behavior-Specific and Behavior-Independent Modules , 2004, The Journal of Neuroscience.

[42]  Scott L. Hooper,et al.  The Pyloric Pattern of the Lobster (Panulirus interruptus) Stomatogastric Ganglion Comprises Two Phase-Maintaining Subsets , 1997, Journal of Computational Neuroscience.

[43]  Brian Mulloney,et al.  Bursts of information: coordinating interneurons encode multiple parameters of a periodic motor pattern. , 2006, Journal of neurophysiology.

[44]  M. Taussig The Nervous System , 1991 .

[45]  P. Stein Neuronal control of turtle hindlimb motor rhythms , 2005, Journal of Comparative Physiology A.

[46]  K. R. Weiss,et al.  Changes of Internal State Are Expressed in Coherent Shifts of Neuromuscular Activity in Aplysia Feeding Behavior , 2005, The Journal of Neuroscience.

[47]  I. A. Rybak,et al.  Modeling the ponto-medullary respiratory network , 2004, Respiratory Physiology & Neurobiology.

[48]  E Marder,et al.  Modulation of the lobster pyloric rhythm by the peptide proctolin , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Ronald L Calabrese,et al.  Model of intersegmental coordination in the leech heartbeat neuronal network. , 2002, Journal of neurophysiology.

[50]  Ronald L Calabrese,et al.  Phase relationships between segmentally organized oscillators in the leech heartbeat pattern generating network. , 2002, Journal of neurophysiology.

[51]  Fiona E. N. LeBeau,et al.  Microcircuits in action – from CPGs to neocortex , 2005, Trends in Neurosciences.

[52]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[53]  O. Kiehn,et al.  Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord , 2003, Progress in Neurobiology.

[54]  W. O. Friesen,et al.  Sensory Modification of Leech Swimming: Rhythmic Activity of Ventral Stretch Receptors Can Change Intersegmental Phase Relationships , 2000, The Journal of Neuroscience.

[55]  Ronald L. Calabrese,et al.  Neural control of the hearts in the leech,Hirudo medicinalis , 2004, Journal of Comparative Physiology A.

[56]  Scott L. Hooper,et al.  Phase Maintenance in the Pyloric Pattern of the Lobster (Panulirus interruptus) Stomatogastric Ganglion , 1997, Journal of Computational Neuroscience.

[57]  F K Skinner,et al.  Intersegmental Coordination of Swimmeret Movements: Mathematical Models and Neural Circuitsa , 1998, Annals of the New York Academy of Sciences.

[58]  J. C. Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations Of coupled pacemaker neurons. , 1999, Journal of neurophysiology.

[59]  Jan-Peter Hildebrandt,et al.  Circulation in the Leech, Hirudo Medicinalis L , 1988 .

[60]  R. Calabrese,et al.  Motor pattern switching in the heartbeat pattern generator of the medicinal leech: membrane properties and lack of synaptic interaction in switch interneurons , 1999, Journal of Comparative Physiology A.

[61]  S. Grillner,et al.  Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. , 2003, Journal of neurophysiology.

[62]  E L Peterson,et al.  Dynamic analysis of a rhythmic neural circuit in the leech Hirudo medicinalis. , 1982, Journal of neurophysiology.