Likelihood parameter estimation for calibrating a soil moisture model using radar bakscatter

article i nfo Land surface model parameter estimation can be performed using soil moisture information provided by synthetic aperture radar imagery. The presence of speckle necessitates aggregating backscatter measure- ments over large (N100 m×100 m) land areas in order to derive reliable soil moisture information from imagery, and a model calibrated to such aggregated information can only provide estimates of soil moisture at spatial resolutions required for reliable speckle accounting. A method utilizing the likelihood formulation of a probabilistic speckle model as the calibration objective function is proposed which will allow for calibrating land surface models directly to radar backscatter intensity measurements in a way which simultaneously accounts for model parameter- and speckle-induced uncertainty. The method is demon- strated using the NOAH land surface model and Advanced Integral Equation Method (AIEM) backscatter model calibrated to SAR imagery of an area in the Southwestern United States, and validated against in situ soil moisture measurements. At spatial resolutions finer than 100 m×100 m NOAH and AIEM calibrated using the proposed radar intensity likelihood parameter estimation algorithm predict surface level soil moisture to within 4% volumetric water content 95% of the time, which is an improvement over a 95% prediction confidence of 10% volumetric water content by the same models calibrated directly to soil moisture information derived from synthetic aperture radar imagery at the same scales. Results suggest that much of this improvement is due to increased ability to simultaneously estimate NOAH parameters and AIEM surface roughness parameters.

[1]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[2]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[3]  Wolfgang Wagner,et al.  On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar , 2008, Sensors.

[4]  P. R. Johnston,et al.  Parameter optimization for watershed models , 1976 .

[5]  H. Pan,et al.  A two-layer model of soil hydrology , 1984 .

[6]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[7]  Mehrez Zribi,et al.  Calibration of the Integral Equation Model for SAR data in C‐band and HH and VV polarizations , 2006 .

[8]  M. S. Dawson,et al.  A modified IEM model for: scattering from soil surfaces with application to soil moisture sensing , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[9]  M. S. Moran,et al.  Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils , 2008 .

[10]  Jean-Christophe Calvet,et al.  From Near-Surface to Root-Zone Soil Moisture Using Year-Round Data , 2000 .

[11]  Soroosh Sorooshian,et al.  The Analysis of Structural Identifiability: Theory and Application to Conceptual Rainfall-Runoff Models , 1985 .

[12]  Aaron A. Berg,et al.  Realistic Initialization of Land Surface States: Impacts on Subseasonal Forecast Skill , 2004 .

[13]  W. R. Osterkamp,et al.  Geology, Soils, and Geomorphology of the Walnut Gulch Experimental Watershed, Tombstone, Arizona , 2008 .

[14]  Yuqiong Liu,et al.  Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework , 2007 .

[15]  Ross Bryant,et al.  Measuring Surface Roughness Height to Parameterize Radar Backscatter Models for Retrieval of Surface Soil Moisture , 2007, IEEE Geoscience and Remote Sensing Letters.

[16]  Douglas Alan Miller,et al.  Soil property database: Southern Great Plains 1997 Hydrology Experiment , 2002 .

[17]  M. S. Moran,et al.  Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed , 2007 .

[18]  Thomas J. Jackson,et al.  Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data , 2008 .

[19]  Z. Su,et al.  A method for retrieving soil moisture using active microwave data , 1997 .

[20]  Jan Mertens,et al.  Multiobjective Inverse Modeling for Soil Parameter Estimation and Model Verification , 2006 .

[21]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[22]  M. S. Moran,et al.  Estimating soil moisture at the watershed scale with satellite-based radar and land surface models , 2004 .

[23]  Vegetation data, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[24]  N. Baghdadi,et al.  Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks , 2002 .

[25]  George Tauchen,et al.  EVALUATION OF MAXIMUM LIKELIHOOD , 2001 .

[26]  Wei Guo,et al.  Real‐time weekly global green vegetation fraction derived from advanced very high resolution radiometer‐based NOAA operational global vegetation index (GVI) system , 2010 .

[27]  G. Gutman,et al.  The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models , 1998 .

[28]  Wim G.M. Bastiaanssen,et al.  Is large-scale inverse modelling of unsaturated flow with areal average evaporation and surface soil moisture as estimated from remote sensing feasible? , 1993 .

[29]  Seon Ki Park,et al.  Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III) , 2009 .

[30]  D. Vidal-Madjar,et al.  Radar backscattering over agricultural bare soils , 1996 .

[31]  M. S. Moran,et al.  Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland , 2000 .

[32]  P. Paillou,et al.  Relationship between profile length and roughness variables for natural surfaces , 2000 .

[33]  Soroosh Sorooshian,et al.  Evaluation and Transferability of the Noah Land Surface Model in Semiarid Environments , 2005 .

[34]  W. Crow,et al.  The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97 , 2003 .

[35]  Mehrez Zribi,et al.  Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations , 2006 .

[36]  Thuy Le Toan,et al.  A comparison between soil roughness statistics used in surface scattering models derived from mechanical and laser profilers , 2003, IEEE Trans. Geosci. Remote. Sens..

[37]  Richard Raspet,et al.  Roughness Measurements of Soil Surfaces by Acoustic Backscatter , 2003 .

[38]  Adrian K. Fung,et al.  Backscattering from a randomly rough dielectric surface , 1992, IEEE Trans. Geosci. Remote. Sens..

[39]  D. R. Fatland,et al.  Penetration depth as a DInSAR observable and proxy for soil moisture , 2003, IEEE Trans. Geosci. Remote. Sens..

[40]  Binayak P. Mohanty,et al.  Near‐surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithms: 2. Using airborne remote sensing during SGP97 and SMEX02 , 2009 .

[41]  Randal D. Koster,et al.  Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model , 2005 .

[42]  M. Sahebi,et al.  Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements , 2004 .

[43]  Wade T. Crow,et al.  Assimilation of a Satellite-Based SoilMoisture Product into a Two-Layer Water Balance Model for a Global Crop Production Decision Support System , 2009 .

[44]  Niko E. C. Verhoest,et al.  Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[45]  M. Mancini,et al.  Retrieving Soil Moisture Over Bare Soil from ERS 1 Synthetic Aperture Radar Data: Sensitivity Analysis Based on a Theoretical Surface Scattering Model and Field Data , 1996 .

[46]  Thomas J. Jackson,et al.  Calibrating a soil water and energy budget model with remotely sensed data to obtain quantitative information about the soil , 1997 .

[47]  F. Ulaby Radar measurement of soil moisture content , 1974 .

[48]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Jin-Young Hong,et al.  Effect of Surface Profile Length on the Backscattering Coefficients of Bare Surfaces , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[50]  M. S. Moran,et al.  Long‐term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[51]  Wade T. Crow,et al.  A Novel Method for Quantifying Value in Spaceborne Soil Moisture Retrievals , 2007 .

[52]  J. Goodman Statistical Properties of Laser Speckle Patterns , 1963 .

[53]  M. H. Diskin,et al.  A procedure for the selection of objective functions for hydrologic simulation models , 1977 .

[54]  N. Baghdadi,et al.  Potential of ERS and Radarsat data for surface roughness monitoring over bare agricultural fields: Application to catchments in Northern France , 2002 .

[55]  Mary H. Nichols,et al.  Southwest Watershed Research Center Data Access Project , 2008 .

[56]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[57]  Qin Li,et al.  Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations , 2003, IEEE Trans. Geosci. Remote. Sens..

[58]  J. Dainty Laser speckle and related phenomena , 1975 .

[59]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[60]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[61]  M. S. Moran,et al.  Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid environment , 2008 .

[62]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[63]  R. Colwell Remote sensing of the environment , 1980, Nature.

[64]  Joshua R. Smith,et al.  Long‐term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[65]  F. Mattia,et al.  Backscattering Properties of Multi-Scale Rough Surfaces , 1999 .

[66]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[67]  T. H. Podmore,et al.  An Automated Profile Meter for Surface Roughness Measurements , 1981 .

[68]  Azzeddine Soulaïmani,et al.  Uncertainty in hydrological and hydraulic modeling : editorial introduction , 2010 .

[69]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[70]  N. Baghdadi,et al.  Retrieving surface roughness and soil moisture from SAR data using neural networks. , 2002 .

[71]  Binayak P. Mohanty,et al.  Near‐surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithm: 1. Conceptual modeling , 2008 .

[72]  Aaron A. Berg,et al.  Evaluation of 10 Methods for Initializing a Land Surface Model , 2005 .

[73]  M. Zribi,et al.  A new empirical model to retrieve soil moisture and roughness from C-band radar data , 2003 .

[74]  D. Vidal-Madjar,et al.  Backscattering behavior and simulation comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval , 1997 .