Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization.

The effects of AlGaAs shell thickness and growth time on the minority carrier lifetime in the GaAs core of GaAs/AlGaAs core-shell nanowires grown by metal-organic chemical vapor deposition are investigated. The carrier lifetime increases with increasing AlGaAs shell thickness up to a certain value as a result of reducing tunneling probability of carriers through the AlGaAs shell, beyond which the carrier lifetime reduces due to the diffusion of Ga-Al and/or impurities across the GaAs/AlGaAs heterointerface. Interdiffusion at the heterointerface is observed directly using high-angle annular dark field scanning transmission electron microscopy. We achieve room temperature minority carrier lifetimes of 1.9 ns by optimizing the shell growth with the intention of reducing the effect of interdiffusion.

[1]  C. Dwyer,et al.  Compositional analysis of GaAs/AlGaAs heterostructures using quantitative scanning transmission electron microscopy , 2013 .

[2]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[3]  Kui‐Qing Peng,et al.  Silicon Nanowires for Photovoltaic Solar Energy Conversion , 2011, Advanced materials.

[4]  L. L. Chang,et al.  Interdiffusion between GaAs and AlAs , 1976 .

[5]  Richard K. Ahrenkiel,et al.  Measurement of minority-carrier lifetime by time-resolved photoluminescence , 1992 .

[6]  H. Morkoc,et al.  An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors , 1984, IEEE Transactions on Electron Devices.

[7]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[8]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[9]  E. Bakkers,et al.  Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning , 2006 .

[10]  B. Fimland,et al.  A story told by a single nanowire: optical properties of wurtzite GaAs. , 2012, Nano letters.

[11]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[12]  C. Abernathy Carbon incorporation in GaAs and AlGaAs grown by MOMBE using trimethlgallium , 1991 .

[13]  T. Noda,et al.  Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures , 1994 .

[14]  Ray R. LaPierre,et al.  Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells , 2011 .

[15]  H. Tan,et al.  The conduction band absorption spectrum of interdiffused InGaAs/GaAs quantum dot infrared photodetectors , 2012 .

[16]  M. Weyland,et al.  Sub-0.1 nm-resolution quantitative scanning transmission electron microscopy without adjustable parameters , 2012 .

[17]  Bahram Nabet,et al.  Picosecond response times in GaAs/AlGaAs core/shell nanowire-based photodetectors , 2011 .

[18]  P. Prete,et al.  Built‐in elastic strain and localization effects on GaAs luminescence of MOVPE‐grown GaAs–AlGaAs core–shell nanowires , 2013 .

[19]  Chennupati Jagadish,et al.  Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures , 2008 .

[20]  S. R. Andrews,et al.  Experimental and theoretical studies of the performance of quantum‐well infrared photodetectors , 1991 .

[21]  C. Dwyer,et al.  Scattering of A-scale electron probes in silicon. , 2003, Ultramicroscopy.

[22]  R. Leibenguth,et al.  Interface disorder in AlAs/(Al)GaAs Bragg reflectors , 1991 .

[23]  C. Jagadish,et al.  Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs , 2006, cond-mat/0610567.

[24]  Photocurrent and photoconductance properties of a GaAs nanowire , 2009, 0905.3659.

[25]  M. Kaniber,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .

[26]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[27]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[28]  J. Wallentin,et al.  Nanowires With Promise for Photovoltaics , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  J. Morante,et al.  Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires , 2009 .

[30]  Bin Sun,et al.  Recent advances in solar cells based on one-dimensional nanostructure arrays. , 2012, Nanoscale.

[31]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[32]  J. Etheridge,et al.  Polarity-driven 3-fold symmetry of GaAs/AlGaAs core multishell nanowires. , 2013, Nano letters.

[33]  J. Silcox,et al.  Simulation of annular dark field stem images using a modified multislice method , 1987 .

[34]  H. Rose,et al.  Conditions and reasons for incoherent imaging in STEM , 1996 .

[35]  Tuviah E. Schlesinger,et al.  Determination of the interdiffusion of Al and Ga in undoped (Al,Ga)As/GaAs quantum wells , 1986 .

[36]  Yong Ding,et al.  Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. , 2009, Nano letters.

[37]  Baolai Liang,et al.  Bottom-up photonic crystal lasers. , 2011, Nano letters.

[38]  James C. M. Hwang,et al.  Group-III vacancy induced InxGa1-xAs quantum dot interdiffusion , 2006 .

[39]  C. Giannini,et al.  Carbon incorporation in GaAs and AlxGa1−xAs layers grown by molecular‐beam epitaxy , 1993 .

[40]  G. Abstreiter,et al.  Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires. , 2012, Nano letters.

[41]  Bernd Witzigmann,et al.  Modelling surface effects in nano wire optoelectronic devices , 2012 .

[42]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[43]  T. Tanaka,et al.  III–V Nanowires on Si Substrate: Selective-Area Growth and Device Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  J. Klem,et al.  Comparison of transport, recombination, and interfacial quality in molecular beam epitaxy and organometallic vapor‐phase epitaxy GaAs/AlxGa1−xAs structures , 1994 .

[45]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[46]  Chennupati Jagadish,et al.  Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires , 2012 .

[47]  A Gustafsson,et al.  Self-assembled quantum dots in a nanowire system for quantum photonics. , 2013, Nature materials.

[48]  Jinyao Tang,et al.  Solution-processed core-shell nanowires for efficient photovoltaic cells. , 2011, Nature nanotechnology.

[49]  N. Holonyak,et al.  Wavelength modification of AlxGa1−xAs quantum well heterostructure lasers by layer interdiffusion , 1983 .

[50]  L. L. Chang,et al.  Dependence of the Diffusion Coefficient on the Fermi Level: Zinc in Gallium Arsenide , 1967 .

[51]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[52]  H. Jiang,et al.  Aluminum-Induced photoluminescence red shifts in core-shell GaAs/Al(x)Ga(1-x)As nanowires. , 2013, Nano letters.

[53]  O. Brandt,et al.  Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. , 2011, Nano letters.

[54]  L. Samuelson,et al.  Phase segregation in AlInP shells on GaAs nanowires. , 2006, Nano letters.

[55]  Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires , 2013, 1302.3161.

[56]  A. Willoughby Atomic diffusion in semiconductors , 1978 .

[57]  C. Chang-Hasnain,et al.  GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. , 2011, Nano letters.

[58]  M. Mashita Reaction Mechanisms in the OMVPE Growth of GaAs and AlGaAs , 1990 .

[59]  B. Tuck Mechanisms of atomic diffusion in the III-V semiconductors , 1985 .

[60]  C. Jagadish,et al.  Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots , 1996 .