A Parallel Plugin-Based Framework for Multi-objective Optimization

This work presents a parallel framework for the solution of multi-objective optimization problems. The framework implements some of the best known multi-objective evolutionary algorithms. The framework architecture makes usage of configuration files to provide a more extensive and simple customization environment than other similar tools. A wide variety of configuration options can be specified to adapt the software behaviour to many different parallel models, including a new adaptive model which dynamically grants more computational resources to the most promising algorithms. The plugin-based architecture of the framework minimizes the final user effort required to incorporate their own problems and evolutionary algorithms, and facilitates the tool maintenance. The flexibility of the approach has been tested by configuring a standard homogeneous island-based model and a self-adaptive model. The computational results obtained for problems with different granularity demonstrate the efficiency of the provided parallel implementation.

[1]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[2]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[3]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[4]  Pascal Bouvry,et al.  An Overview of MANETs Simulation , 2006, MTCoord@COORDINATION.

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  Kalyanmoy Deb,et al.  Parallelizing multi-objective evolutionary algorithms: cone separation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[7]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[8]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[9]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[10]  Marc P. Armstrong,et al.  A Specialized Island Model and Its Application in Multiobjective Optimization , 2003, GECCO.

[11]  Enrique Alba,et al.  Efficient parallel LAN/WAN algorithms for optimization. The mallba project , 2006, Parallel Comput..

[12]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[13]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[14]  Gary B. Lamont,et al.  Considerations in engineering parallel multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[15]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[16]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[17]  Enrique Alba,et al.  Metaheuristic Approaches for Optimal Broadcasting Design in Metropolitan MANETs , 2007, EUROCAST.

[18]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[19]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[20]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[21]  Tracy Camp,et al.  Comparison of broadcasting techniques for mobile ad hoc networks , 2002, MobiHoc '02.

[22]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[23]  Marc Parizeau,et al.  Genericity in Evolutionary Computation Software Tools: Principles and Case-study , 2006, Int. J. Artif. Intell. Tools.

[24]  Edmund K. Burke,et al.  Hyperheuristic Approaches for Multiobjective Optimisation , 2003 .

[25]  Joseph P. Macker,et al.  Mobile ad hoc networking and the IETF , 2006, MOCO.

[26]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[27]  Gara Miranda,et al.  Parallel hyperheuristic: a self-adaptive island-based model for multi-objective optimization , 2008, GECCO '08.

[28]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[29]  Enrique Alba,et al.  A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs , 2007, Comput. Commun..

[30]  El-Ghazali Talbi,et al.  ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization , 2007, EMO.

[31]  Marc Parizeau,et al.  Open BEAGLE: A New C++ Evolutionary Computation Framework , 2002, GECCO.

[32]  Luca Di Gaspero,et al.  EASYLOCAL++: an object‐oriented framework for the flexible design of local‐search algorithms , 2003, Softw. Pract. Exp..

[33]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[34]  Maarten Keijzer,et al.  Evolving Objects: A General Purpose Evolutionary Computation Library , 2001, Artificial Evolution.

[35]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[36]  El-Ghazali Talbi,et al.  A multiobjective genetic algorithm for radio network optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[37]  Freda Kemp,et al.  The Handbook of Parametric and Nonparametric Statistical Procedures , 2003 .

[38]  Marcin Seredynski,et al.  A Bandwidth-Efficient Broadcasting Protocol for Mobile Multi-hop Ad hoc Networks , 2006, International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL'06).

[39]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[40]  Luc Hogie,et al.  Mobile Ad Hoc Networks: Modelling, Simulation and Broadcast-based Applications. (Réseaux Mobile Ad hoc : modélisation, simulation et applications de diffusion) , 2007 .

[41]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.