Voltammetric study of the transfer of keggin-type heteropolyanions across the nitrobenzene/water interface

[1]  T. Osakai,et al.  Electrochemical Formation of 11-Molybdophosphate Anion at the Nitrobenzene/Water Interface and Its Applicability to the Determination of Orthophosphate Ion , 1991 .

[2]  S. Himeno,et al.  Synthesis and Characterization of 18-Molybdopyrophosphate Complex , 1990 .

[3]  E. Wang,et al.  The phase transfer mechanism of 12- and 18-molybdophosphate anions (Keggin- and Dawson-type structures) across the water/nitrobenzene interface , 1990 .

[4]  T. Osakai,et al.  Voltammetric Study of the Transfer of 12-Molybdosilicate Anion at the Nitrobenzene/Water Interface , 1989 .

[5]  S. Himeno,et al.  Spectroscopic and electrochemical characterization of 18-molybdodisulfate (VI)(4-), S2Mo18O624-. , 1989 .

[6]  A. Volkov,et al.  The gibbs free energy of ion transfer between two immiscible liquids , 1989 .

[7]  H. Yamada,et al.  Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins , 1988 .

[8]  H. Freiser,et al.  Ascending water electrode studies of metal extractants 4-acyl-5-pyrazolones and selected tervalent lanthanide ions , 1987 .

[9]  M. Senda,et al.  Supporting Electrolytes for Voltammetric Study of Ion Transfer at Nitrobenzene/Water Interface , 1987 .

[10]  W. Yu,et al.  Electrochemical Study on the Mechanism of Lanthanide Ion Extraction with Methylene Bis(diphenylphosphine oxide) at Ascending Water Electrode , 1987 .

[11]  J. Koryta,et al.  Kinetics of salt extraction into the high-permittivity oil phase: Part II. Extraction rates of simple salts determined with the data of electrolysis at the interface of two immiscible electrolyte solutions , 1987 .

[12]  J. Koryta Kinetics of salt extraction into the high-permittivity oil phase: Rate measurement by electrolysis at the interface of two immiscible electrolyte solutions , 1986 .

[13]  A. Kornyshev,et al.  On the evaluation of standard Gibbs energies of ion transfer between two solvents , 1984 .

[14]  H. Freiser,et al.  Ascending water electrode studies of metal extractants. Role of kinetic factors in the faradaic ion transfer of metal-phenanthroline complex ions across an aqueous-organic solvent interface , 1984 .

[15]  J. Koryta Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions—III. Progress since 1983☆ , 1984 .

[16]  H. Freiser,et al.  Ascending water electrode studies of metal extractants: Faradaic ion transfer of protonated, 1,10-phenanthroline and its derivatives across an aqueous 1,2-dichloroethane interface , 1984 .

[17]  T. Hori,et al.  Electrolytic reduction of molybdophosphate in aqueous acetonitrile and its application to flow-coulometric determination of orthophosphate. , 1983, Talanta.

[18]  M. Ricci,et al.  A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions , 1983 .

[19]  M. Senda,et al.  A Potential-step Chronoamperometric Study of Ion Transfer at the Water/Nitrobenzene Interface , 1983 .

[20]  S. R. Crouch,et al.  Kinetics of the formation and decomposition of 12-molybdophosphate , 1983 .

[21]  J. Livage,et al.  Electron delocalization in mixed-valence molybdenum polyanions , 1982 .

[22]  J. Koryta Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions , 1979 .

[23]  A. Fogg,et al.  Assessment of a new method for the differential pulse polarographic determination of silicon in steel. , 1978, Talanta.

[24]  P. Vanýsek,et al.  Electrolysis with electrolyte dropping electrode: II. Basic properties of the system , 1977 .

[25]  A. Fogg,et al.  Pulse Polarographic: Determination of Nanogram Amounts of Ortho-Phosphate , 1976 .

[26]  D. F. Boltz,et al.  Atomic absorption spectrometric study of the extractability of selected molybdoheteropoly acids , 1975 .

[27]  F. Umland,et al.  Polarographische Untersuchungen in organischen Lösungsmitteln , 1972 .

[28]  F. Umland,et al.  Polarographische Spurenbestimmungen des Phosphors und Siliciums in organischen Lösungsmittelgemischen , 1971 .

[29]  D. F. Boltz,et al.  Indirect ultraviolet spectrophotometric and atomic absorption spectrometric methods for determination of phosphorus and silicon by heteropoly chemistry of molybdate , 1968 .

[30]  R. S. Nicholson,et al.  Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. , 1964 .

[31]  M. T. Pope,et al.  The Identical Diffusion Coefficients of Isostructural Heteropoly Anions. The Complete Independence of D from Ionic Weight , 1960 .

[32]  T. Kurucsev,et al.  Size and Hydration of Inorganic Macroions from Viscosity and Density Measurements , 1957 .

[33]  M. Mellon,et al.  Extraction of Heteropoly Acids , 1953 .

[34]  M. Senda,et al.  A microcomputer-controlled system for ion-transfer voltammetry. , 1989 .

[35]  E. Wang,et al.  Phase transfer of the 12-tungstosilicate anion across the water/nitrobenzene interface , 1988 .

[36]  W. Ruth,et al.  Mobilities of some univalent ions in aqueous and nitrobenzene media , 1984 .

[37]  G. Tsigdinos Heteropoly compounds of molybdenum and tungsten , 1978 .