Nanostructured MnGa films on Si/SiO2 with 20.5 kOe room temperature coercivity

Nanostructured Mn67Ga33 films exhibiting high room temperature coercivity (HC = 20.5 kOe) have been prepared by sputtering onto thermally oxidized Si substrates. Both the morphology and the coercivity of the films can be tuned by varying the growth parameters. The low deposition rate film, sputtered at a reduced power and working pressure, demonstrates a discontinuous island-like growth and the highest HC. The large HC is linked to the presence of the high anisotropy DO22 Mn3Ga phase and the single domain character of the exchange isolated, dipolar interacting, single crystal islands.

[1]  T. Miyazaki,et al.  Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy. , 2011, Physical review letters.

[2]  Pseudo Spin Valves Using a (1 1 2)-Textured D0$_{22}$ Mn$_{2.3-2.4}$Ga Fixed Layer , 2009, IEEE Magnetics Letters.

[3]  G. Fecher,et al.  Structural, electronic, and magnetic properties of tetragonal Mn3-xGa: Experiments and first-principles calculations , 2008 .

[4]  J. Katine,et al.  Device implications of spin-transfer torques , 2008 .

[5]  T. Miyazaki,et al.  Epitaxial Mn2.5Ga thin films with giant perpendicular magnetic anisotropy for spintronic devices , 2009 .

[6]  K. Hono,et al.  Microstructure and magnetic properties of FePt and Fe/FePt polycrystalline films with high coercivity , 2004 .

[7]  Huseyin Kurt,et al.  High spin polarization in epitaxial films of ferrimagnetic Mn3Ga , 2011 .

[8]  Tsung-Shune Chin,et al.  Permanent magnet films for applications in microelectromechanical systems , 2000 .

[9]  Parkin,et al.  The magnetic stability of spin-dependent tunneling devices , 1998, Science.

[10]  A. Moser,et al.  Thermal effect limits in ultrahigh-density magnetic recording , 1999 .

[11]  Jian-Gang Zhu,et al.  Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability , 2008, Proceedings of the IEEE.

[12]  Sylvie Oliffson Kamphorst,et al.  On the fractal dimension of self-affine profiles , 1994 .

[13]  I. Schuller,et al.  Ordered magnetic nanostructures: fabrication and properties , 2003 .

[14]  Koki Takanashi,et al.  Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films , 2004 .

[15]  S. Ishio,et al.  Morphology and domain pattern of L10 ordered FePt films , 2003 .

[16]  K. Müller,et al.  Dependence of thin‐film microstructure on deposition rate by means of a computer simulation , 1985 .

[17]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[18]  Y. Yamaguchi,et al.  Magnetization and coercivity of Mn3−δGa alloys with a D022‐type structure , 1996 .

[19]  T. Miyazaki,et al.  Electrical transport properties of perpendicular magnetized Mn-Ga epitaxial films , 2010 .

[20]  Margaret Evans Best,et al.  High K/sub u/ materials approach to 100 Gbits/in/sup 2/ , 2000 .

[21]  A. Roig,et al.  Optimized Synthesis of the Elusive ε-Fe2O3 Phase via Sol−Gel Chemistry , 2004 .

[22]  Claudia Felser,et al.  Mn3Ga, a compensated ferrimagnet with high Curie temperature and low magnetic moment for spin torque transfer applications , 2007 .

[23]  G. Hadjipanayis Nanophase hard magnets , 1999 .

[24]  S. Komogortsev,et al.  Magnetization curves of randomly oriented ferromagnetic single-domain nanoparticles with combined symmetry of magnetic anisotropy , 2008 .

[25]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[26]  Sheng Zhang,et al.  Temperature dependence of structure and magnetic properties in MnBi-based alloy films , 1999 .